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Chapter 1
Introduction

There are many different models for valuing interest rate derivatives. They differ
among each other depending on the modeled interest rate (e.g. short, forward or
swap rate), the distribution of the future unknown rates (e.g. normal or lognormal),
the number of driving factors (one or more dimensions), the appropriate involved
techniques (trees or Monte Carlo simulations) and different possible extensions.

One of the most discussed models recently is the market model presented in
[BGM97], [MSS97 and [Jam9T. The development of this model has two main
consequences. First, for the first time an interest rate model can value caplets or
swaptions consistently with the long-used formulee of Black. Second, this model
can easily be extended to a larger number of factors. These two features, com-
bined with the fact that this model usually needs slow Monte Carlo simulations for
pricing non plain-vanilla options, lead to using this model mainly as a benchmark
model. This usage as a benchmark additionally enforces the need for consistent
pricing of all existing options in the market.

Two main lines of actual research exist. On the one hand, more and more complex
derivatives are coming up in the market. As they usually depend heavily upon the
correlation matrix and/or the term structure of volatility and/or a large number of
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forward rates, many new efficient techniques are needed, e.g. for implementing
exercise boundaries, computing deltds ...

On the other hand, there is still a big pricing issue left with the underlying plain-
vanilla instruments. The original model is calibrated with these instruments but
only with the at-the-money (= ATM) options. The market price of options in or
out of the money is almost always very different from the price actually computed
in the ATM-calibrated model. This behavior is not only troublesome for these
plain-vanilla instruments but also for more complex derivatives such as Bermudan
swaptions.

This thesis concentrates on the latter line of research and gives an overview of
many possible ways of incorporating this volatility smile. It tries to focus on
the implementation and calibration of these models and to give an overview of
the advantages and shortcomings of each model. The main goal will be to fit
the whole term-structure of all forward rates with one model rather than pricing
only one single volatility smile, i.e. the smile of caplets on one forward rate with
different strikes, as close as possible. Special attention is drawn to the model
implied future volatility smiles since these model immanent prices have a strong
influence on exotic derivative prices and are not controllable but determined by
the chosen model.

Chapter 2 starts with introducing the LIBOR market model and the involved tech-
niques for calibrating the model and pricing derivatives. In Chapter 3 the volatil-
ity smile is examined and the desired features of possible extensions are discussed.
The second part of this thesis discussing possible basic models and elaborating the
advantages but even more the shortcomings of each is divided into four chapters.
In Chapter 4 the local volatility models are introduced, Chapter 5 presents uncer-
tain volatility models, in Chapter 6 stochastic volatility models are discussed and
Chapter 7 gives an overview of models with jump processes. The third part com-
pares these basic models and basing on the findings suggests advanced, combined
models. In Chapter 8 the model implied future volatility skew is compared and
building on these findings combined models are proposed. In Chapter 9 these

1 See e.g.Pit034.
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advanced models are tested trying to reach the goal of fitting the whole term-
structure of volatility smiles. Chapter 10 finally summarizes and gives an outlook
of still existing problems and suggestions for future research.

The comparison rather than the mathematical derivation of these models is the
main goal of this thesis. Mathematical concepts are therefore explained "on de-
mand” during the text or deferred to Appendix A.



Chapter 2

The LIBOR Market Model

In this chapter the basics of the market models establisheB®¥P7], [MSS91

and Pam9T shall be introduced first. The focus of this thesis will be on the
LIBOR market model which models the evolution of forward rates of fixed step
size as a multi-factorial Ito diffusion. After describing the input quantities of
the model (yield curve, volatility, correlation), at the end of the chapter different
techniques for pricing interest rate derivatives will be presented and a summary of
differences to other models will be givén.

2.1 Yield Curve

In every model as a first step one has to build up the yield curve from plain vanilla
instruments without optionality. In the market there are different instruments avail-
able: cash (= spot) rates, forward rate agreements (FRAS), futures and swap rates.
Depending on the currency, the most liquid ones are chosen to span the curve.
Usually, for US-$ short term interest rates one to three cash rates (1 day, 1 month
and 3 months LIBOR) and 16 to 28 Euro-Dollar futures are used, i.e. starting with
the front future the three-months LIBOR futures for 4 up to 7 years. 4 to 9 swap

1 For a more comprehensive overview over deriving the LIBOR market model and pricing deriva-
tives seelflei04].



CHAPTER 2. THE LIBOR MARKET MODEL 6

rates (5, 7, 10, 12, 15, 20, 25, 30 and 50 years) span the long-term part of the yield
2
curve:

As the reset dates of the Euro-Dollar futures are fixed they usually do not coincide

with the fixed step size of the LIBOR market model, where one assumes that —
depending on the currency — every 3 or 6 months in the future one forward rate

resets. Therefore, the discount factors are used to compute all needed forward
LIBOR ratesL(t, T, T +0) at timet for any reset dat& and tenom:

L(t,T,T+93) = (%—1) /3 (2.1)

whereP(t, T) is the price of a discount bond at tirhgvith maturity T.

Since one not only wants to price derivatives with reset dates that coincide with
the reset dates chosen in the model but also other non-standardized derivatives
that are usually traded "over the counter” (= OTC), a "bridging-technique” for
interpolating the required forward rates is useBor ease of presentation in the
following this problem is neglected. When in the model these forward rates are
evolved over time one can see the first big advantage of the LIBOR market model:
these forward rates are actually market observables.

2.2 \Volatility

For evolving these forward rates, that have been defined in the previous section,
over time one has to determine two parts. The first part is the uncertainty, i.e. the
random up or down moves with a specified volatility. This part is independent of

2 How many of those instruments are actually chosen mainly depends on the liquidity of these
derivatives. The number of forward rates that have to be evolved in the LIBOR market model
over time is chosen independently of this.

3 See BMO01], p. 264-266.

4 Although the forward rate in the LIBOR market model is not exactly the same as the Euro-
Dollar future rate, OTC forward rate agreements that have exactly the same specification as
the forward rate in the model can be traded. With models using spot or instantaneous forward
rates this is not possible.
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the chosen probability measutélhe second part is the deterministic drift of the
forward rate depending on the chosen measure. For each forward rate there exists
one special measure for which the drift equals 0. This measure then is called the
(respective) forward or terminal measure.

With the assumption that the forward rates follow a lognormal evolution over time,
we can write for the forward ratg (t) = L(t, T, Ti+1) the

Forward Rate Evolution: B

dLi(t) = Lit)w(t)dt+ Lt Zo,k t)dzy, (2.2)

Ki(t) = the drift of the forward LIBOR raté,(t) under the chosen

measure,
m = the number of factors/dimensions of the motlel,
oik(t) = the volatility of the logarithm of the forward ratg(t) com-
ing from factork,
dzy = the Brownian increment of factde’
|
With simplifying

= ) ok(t) and by(t) = = (2.3)
k=1

equation 2.2) can be written &5

C:_E;(i(:;) M( dt‘|‘0| me dZ(k = ()dt—|—0'|( )de (2.4)

5 For a concise definition and explanation of these conceptsRs#0), p. 447-490.

6 The number of forward ratescan be larger tham, the number of factors.

7 When talking about the volatility of a forward rate one — strictly speaking — refers to the
volatility of the logarithm of the forward rate.

8 See Reb032, p. 71.
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with

m
dz = ) by(t)dzy),
k1

b(t) = thenx mmatrix of the coefficientd(t)

where it can easily be seen that the covariance of different forward rates can be
separated into the volatility of each forward rate and the correlation narjx

As will be shown in the following sections the volatiligy(t) is calibrated as time-
dependent and the correlation matrix is restricted to be totally time-homogeneous
(Pitk j+k(t+kd) = pi j(t) forallk=0,1,...) for reducing the degrees of freedom:

p(t) = b(t)b(t)" (2.5)

with p; j(t) denotes the instantaneous correlation between the forwardLétes
andL;(t).

As a first step the volatility for each forward rate has to be computed. This is done
by taking the market observable price of an ATM caplet with this specific for-
ward rate as underlying and solving for the implicit volatility in Black’s formula,
introduced in his seminal articfe.

2.2.1 Black’s Formula for Caplets

The payoff of a caplet at tim@_,1 is given by°

PayoffCapledy,,, = NP[Li(Ti) —K]"d (2.6)
where
= strike,
NP = notional.

9 See Bla7§, p. 177.
10 See Reb03, p. 32f.
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The underlying assumption in Black’s formula is the lognormal distribution of the
forward rate. This leads to:

1
L) ~ N (L] - 50T -0.0FT-0) @)
where
N(a,b) = the Gaussian normal distribution with mean
and variancé,
o; = the annualized volatility of the logarithm of the

forward ratel;(t).

From this distribution together with equatio2 §) follows

Black’s Caplet Pricing Formula: L
Caplet0,Ti,,NPK,0i) = NP3P(0,Ti;1)BI(K,L;(0),v) (2.8)
where

BI(K,Li(0),v) = Li(0)®(hy)—Kd(hy),

®(x) = the cumulated normal distribution far
In[L; (0) /K] + 32
hl = s
v
h2 = hl—V,
v = oivT.

J

With this formula and market prices for caplets one can then compute the market
implied annualized volatility of the logarithm of the forward rate For brevity
reasons this parameter is usually just called volatility of the forward rate.
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2.2.2 Term Structure of Volatility

Having computed the volatility for each forward rdtg0) cumulated over the
lifetime of the rate Tj) the next step is to determine how this volatilidly can

be distributed over this time. One extreme would be to say that one rate keeps
the same volatility throughout its lifetime, i.e. a time-constant volatility. This
clearly contradicts evidence from historical market data where it can be seen that
a similar shape for the term structure of the volatility of forward rates almost
always prevails in the markets. The other extreme is a totally time-homogeneous
term structure of volatility, i.e. the volatility of a forward rate purely depends on
the time to maturity*!

0i+k(kd) = 0i(0) forall k=0,1,... (2.9)

In this case, all new volatilities with increasing maturity can be bootstrappéed via:

i—1

62Ti
6i(0) = || 75"~ >_E(0)
k=1
~oT a2
OfTi—0f_qTi-1
= . 2.10
\/ 5 (2.10)

For always having positive values for(0) one sees clearly the necessary require-
ment in equation4.10): 6i2Ti must be a monotonous increasing functioni.of
Unfortunately this precondition is not generally fulfilled and even if, the results
obtained with this technique are not always very stable. Therefore, one imposes
additional structure on the volatility of the forward rate:

oi(t) = f(Ti—t) = [a+b(T—t)]e T 4+d. (2.11)

11 See BMO1], p. 195.
12 See Reb03, p. 149.
13 See Reb99, p. 307.
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This function generates exact time-homogeneity and ensures non-negativity of
volatilities. It is flexible enough to be fitted not only to the usual humped shape
but also to a monotonous decreasing volatility structure that prevails sometimes
in the markets.

This proposed function, however, is not sufficient to fit all implied caplet volatili-
ties exactly and can be extended by two additional steps leaditfg to:

oi(t) = £(T—t)g(t)h(T). (2.12)

In an optional first steg(t) is determined to reflect time-dependent movements
in the level of volatility. To avoid modeling noise another structure is imposed
on this function. Usually it is modeled as a sum of a small number of sine waves
multiplied with an exponentially decaying factor.

To ensure the exact recovery of market prices of ATM caplets as a second step
h(T;) is computed:®

A.2 -
hT) = 1+8 = ot (2.13)

[t -vrgwio
0

Ideally the resulting; should be very small.

With this functional form and these one or two additional steps the volatility of
each forward rate has been distributed over time to ensure non-negativity, approx-
imate time-homogeneity and exact replication of market prices of caplets.

2.3 Correlation Matrix

Having found a pricing formula for caplets and having determined the term-
structure of volatilities, for pricing swaptions one also needs the correlation ma-

14 See Reb03, p. 165f.
15 See Reb03, p. 387.
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trix p between the forward rates from equati@gj. These correlations are the so-
called instantaneous correlations. The terminal correlations between the forward
rates that can be estimated from historical market data are different as they not
only depend upon the instantaneous correlations but also upon the term-structure
of volatilities. This effect can be approximated Wa:

oi( t)dt
oLy (), L(T) ~ py) 22 @14
AR dt\/ No
with
Pjk(t) = the instantaneous correlation between the for-
ward rated_j(t) andLy(t),
Corr(Lj(Ti),Lk(Ti)) = the terminal correlation between the forward

ratesL(t) and Lk(t) for the evolution of the
term-structure of interest rates up to tiffje-’

However, this is only an approximation and additionally the terminal correlations
depend upon the chosen measure. Another way for using historical market data
to determine the correlation matrix is to estimate the instantaneous correlation
directly. Choosing a step size of one day is sufficiently small for being measure
invariant.

Generally, there are three ways of determining this instantaneous correlation ma-
trix. First, one could use historical terminal correlations and then 2d&)(to
determine the instantaneous correlations. Second, one could estimate the instan-
taneous correlation directly. Third, actual market prices of European swaptions
can be used. Especially considering the problems with the measure-dependent
terminal correlations, illiquid swaption prices, bid-ask spreads and the heavy in-
fluence a little price change would have on the "implied” correlations, the second
approach seems preferable.

16 See BMO1], p. 219.
17 While the instantaneous correlations were set to be time-constant, the terminal correlation
between two forward rates is not, as it also depends upon the time-varying volatilities.
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2.3.1 Black’s Formula for Swaptions

When deciding for the second approach, however, one needs first an analytic for-
mula for efficiently pricing swaptions for avoiding the computational expensive
step of a simulation. Starting with the payoff of a swaption

0
P(07 TI’)

s—1
Payoff(Swaption; = NP[Ss(Ty) —K]" > POT+1) (2.15)

and the assumption that the swap rate is lognormally distribfited

1
nSs(T)] ~ N (In[S0] - 0T -0.0T 1) (219)
where
Ss(t) = the equilibrium swap rate, i.e. the swap rate leading to
a swap value of 0, from the first reset datdljiro the
last payment of the underlying swapg
ors = the annualized volatility of the logarithm of the swap
rateS s(t),
one gets
Black’s Swaption Pricing Formula: L
s-1

S\Naptior(o7 TI’ ’ TS? N P7 K; Gr,s) = Bl (K7 S’,S (0) 7V) ON PZ P(07 Ti-i-l) (217)

i=r

where
Bl (K,Ss(0),v) = Ss(0)®(hy)—Kd(hy),
In[Ss(0)/K] + 3v?
hl - Vv 5
h2 = hl —V

18 See Reb03, p. 35f.
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and

vV = 0r.,s\/-lTr-
|
As for caplets the above formula and market data can be used to calculated the
market implied volatility of the swap rat® s.

2.3.2 A Closed Form Approximation for Swaptions

Although the swap rates in the forward rate based model are not exactly lognor-
mally distributed, their distribution is very close to the lognormal one, so that
Black’s formula for swaptions2(17) can be used? Using the presentation of a
swap rate as a linear combination of forward rates

Ss(t) = D@L (2.18)

where
P(taTi-l-l)

1 )
T:r P(t, Tj+1)

wi(t) = (2.19)

the volatility of swap rates can be computed by differentiating both sides of the
equation?®

s—1

dSs(t) = _Z[oq(t)dLi<t>+Li<t>dux<t>]+<--->dt

+(..)dt  (2.20)

19 See BMO1], p. 229.
20 See BMO1], p. 246-249.
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where
i = 1,
On = O, fori#h,
—1 17k
6(;0;('[) B wi(t)é Zﬁzhnjzr 1+6}_J-(t) Ton
= - >
dLn(t) 1+3Ln(t) |=r Hm:r 1++|—m(t) -
_ (D8Pt Thsa) [ZEZ% P(t, Tr) _1i>h]_ (2.21)
P(t, Th) PP L)
One fixes:
o e owi(t)

For ease of computation the coefficienigt) are frozen at timé = 0. Equations
(2.20 and Q.22 then lead to:

—1
Z 0)dL;(t) + (...)dt. (2.23)
The quadratic variation of that equals:

)Li(HLj(t)pij(t)ai(t)oj(t)dt.

nMH

—1s
dS s Z

As a second approximation the forward rates are frozen atttim@ leading to a
percentage quadratic variation:

(Si0) (Si) = omsswans.y

s—1s—

pij(t)ai(t)oj(t)dt.

Q

2@ (0)@; (0)Li(0)L(0)
F4(0)

i=r j=r



CHAPTER 2. THE LIBOR MARKET MODEL 16

The variance for Black’s formula for swaptions can be computed as the integral
over the percentage quadratic variation during the life-time of the option:

—1s l_ )

Tr
02 ~ ZZ‘” &0 3,2() <)p”()/o Gi)o;t)dt.  (2.24)

The result of equation2(24) can then be used iR(17) for pricing swaptions
and is called Hull and White’s formula. This obtained fast pricing method for
swaptions is essential for computing the correlation matrix efficiently.

2.3.3 Determining the Correlation Matrix

Independent of having a correlation matrix from historical market data or from

current swaption market prices it is usually preferable to smooth this matrix and
present the data with a small number of parameters. The following one factor
parametrization could be seen as a minimalist approach:

pij = e i T (2.25)

with ¢ being a small positive number.

Generally, when trying to fit a parametric estimate to a correlation matrix, this
parametric form should be able to incorporate these three empirical observa-
tions?!

1. The correlation between the first and the other forward rates is a convex
function of distance.

2. The correlation between the first and the last forward rate is positive.

3. The correlation between two forward rates with the same distance is an
increasing function of maturity.

21 See Reb03, p. 183f, 190.
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The last condition, especially, is violated by many approaches, for example the
one factor form in2.25).

One parametric approach, fulfilling all three conditions, although needing only
two parameters, {2

oozl P~ 3ni-3nj+ 3+ 3]+ 20— n—4
p|7J - Y n—-1 Poo (n_z)(n_s)

(2.26)

where
L) =1,..,n,

0<d< —INpe.

With this formula the two paramete(p.,,d) can be estimated iteratively so that
they fit the historic correlation matrix or prices of swaptions and maybe even other
correlation sensitive derivatives as closely as possible. The parapetan be
interpreted as the positive correlation between the first and the last forward rate;
d determines the difference betwepn, andpn_15. For the usual case where
Pn-1,n > P12, I.€. the correlation between two adjacent forward rates is increasing
with maturity,d takes positive values’

2.3.4 Factor Reduction Techniques

For efficient valuation of derivatives the correlation matrix has to be reduced to

a smaller number of factors as with the number of factors the number of random
numbers that have to be drawn increases and thereby slows down the simulation of
the forward rates. Another reason for keeping the number of factors rather small
is trying to explain these factors with usual market movements. The first factor is
interpreted as a shift of the yield curve (= simultaneous up or down movement of
the forward rates), the second factor as a tilt of the curve (= the forward rates close
to the reset date and the forward rates far away from the reset date move in oppo-
site directions) and the third factor as a butterfly movement, where forward rates

22 See BCOQ, p. 8.
23 For more different parametric forms for the correlation matrix and a comparison of them, see
[BMO4], p. 14-18.
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close to and far away from the reset date move stronger in the same direction than
forward rates in between. These factors can easily be understood and increasing
their number far beyond this is usually avoided.

One possible technique for reducing to a number of factossnaller than the
number of forward rates shall be presented heté From equationZ.3) follows:

m
> bg =1 (2.27)
k=1

The following parametrization can be chosen to ensure that this condition is ful-
filled:2°

k-1
by = COS@ikHSineij fork=1,...m—1,
= (2.28)
bim = Hsineij.
=1

As a first step thesém— 1)n different6;; are chosen arbitrarily. Inserting these
values as a second step in equati®i2§ one can compute thg. As a third step
the correlation matrix is determined by:

m
Pik = > _bjiby. (2.29)
i—1

In the fourth step, this correlation matrix is compared to the original matrix with
the help of a penalty function:

n m inal m 2
X2 = ZZ <p?|:|g|na _ijibki> . (2.30)
i=1

j=1k=1

24 Another possibility is the so-called Principle-Component-Analysis. 56684], p. 148f. The
problem of all possible factor reduction techniques is that they have, especially when reducing
to a very small number of factors, a heavy impact on the correlation matrix changing thereby
the evolution of the term-structure of interest rates and option prices.

25 See Reb03, p. 259.
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This penalty function can then be minimized by iterating steps 2-4 with non-linear
optimization techniques.

2.4 Deriving the Drift

For pricing other non plain-vanilla options one has to resort to Monte Carlo tech-
niques, where all forward rates are rolled out simultaneously. When deriving
Black’s formula for a caplet on the forward rdtgt) the zero bondP(t, T 1) was

used as a numeraire to discount the payoffs of the caplet. With this numeraire in
the connected probability measure, the so-called forward or terminal measure, the
evolution of the interest ratie (t) over time is drift-free and hence a martingale.
For different forward rates, however, one needs different numeraires for cancel-
ing out the drift. To price derivatives depending on more forward rates one needs
these forward rates in one single measure. Therefore, for all (or at least for all but
one) forward rates the measure has to be changed and the drift of each forward
rate has to be determined.

A systematic way of changing drifts shall be presented here. When changing
from one numeraire to another this formula can be used, sometimes referred to as
a "change-of-numeraire toolki#®

S
Uy = KR — {x, U} (2.31)
t
where
uﬁ{ , u§ = the percentage drift terms Bfunder the measure associated
to the numeraired andS,
X = the process for which the drift shall be determined

26 See BMO1], p. 28-32.
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and

[X,Y]; = the quadratic covariance between the two Ito diffusins
andY, notated in the so called "Vaillant brackets” where

[X,Y]; = ox(t) oy (t) pxy(t).2’

The spot measure, i.e. the measure with a discretely rebalanced bank account

B(t)-1
Ba(t) = P(t, Ta)—1+8) J] (1+3Lk(Tw)) (2.32)
k=0

as numeraire, is usually used to simulate the development of forward rates with
Monte Carlo.

Therefore, one sets:

X = Lit),

S = P(t,T+9),

U = Bu(t),
Bit) = m if Tpo1 <t<Tny

resulting in:

o) = 1Y = wo- [LMML

2.33
Bq(t) (2.33)
As P(t,Ti+1) is the numeraire of the associated measure f(r), this leads to
W =0 and:

i
P(t,Ti+8) = P(t,Tgp-1+9) []
j=B(t)

1

TR0 (2.34)

27 See Reb03, p. 182.
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Inserting equations2(34) and @.32) in (2.33 one gets®

W = — L, HiJ =B(t) 1+6}- (t)
Hk 0 (1+6L (Tk)) t
i B)-1
= > [Lib),1+3L(t)],+ [Li(t), 1+ dLk(Ti)l;
i=B() k=0
i H-1 =2
- > 1+6L ]+ z T o 0L
o 3L (i (D05 (1)
= Ol(t)j_%(t) Jl+6:_j(t)J . (2.35)

Hence, the dynamics of a forward rate under the spot measure is givén by:

A 0 UL UM
Jj=B()

With the same technique the process of one forward rate can also be expressed in
any other measure, e.g. the terminal measure of another forwartf rate.

Having calibrated the yield curve to the underlying FRAs and swaps, the volatility
to the caplets and the correlation matrix to the swaptions or to historical data, one
can implement Monte Carlo simulations to evolve the forward rates over time for
pricing more exotic derivatives.

28 The Vaillant brackets have the following properties:
X,YZ = [X,Y]+[X,Z] and[X,Y] = — [X, §].

29 See BMO1], p. 203.

30 See Mei04], p. 14f.
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2.5 Monte Carlo Simulation

The LIBOR market model is Markovian only w. r. t. the full dimensional
process, i.e. the forward ratkj(t + &) is a function of all forward rates
(L1(t),L2(t),...,Ln(t)). Therefore, one has to price options with Monte Carlo sim-
ulations, the usual "tool of last resort”.

These Monte Carlo methods consist of iterating the modeled process, pricing the
derivative on this pathR\f) and determining the price of a derivative as the av-
erage of all paths. Due to the law of large numbers this converges to the correct
price. The estimatBVeg and its standard deviati®iP\es;) are given by?!

1 n
Plest = > PV,

i=1

n

S(PVes) = (PV — PVegy)?.

1
n_lizl

This leads to:

PVest~ N (PV, (2.37)

SZ(PVest)>
n
There are two shortcomings of valuing derivatives with Monte Carlo simulations.
First, the convergence is rather slow, i.e. even with 10,000 pathes the pricing error
can be more than 10 basis points. Second, when valuing the same derivative
under the same market conditions (yield curve, volatility) different prices can be
computed, i.e. valuations are not repeatable if one does not use the same random
number generator with the same seed. Due to these two reasons Monte Carlo
techniques are generally avoided although for path dependent derivatives they are
straightforward to implement.

For using Monte Carlo techniques efficiently the step sizes have to be discretized.
This can be done by an Euler scheme applied to the logarithm of the forward rate

31 See Pac0?, p. 20.
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as shown for the one-factor ca¥e:

In[Li(t+At)] = In[Li(t)]+ (Mt)—%o(t)) At+0i(t)Az (2.38)
with
Az = xVAt, (2.39)
i = aN(0,1) distributed random number.

For At — 0 this is the exact solution, but in applications in practice due to time
constraintd\t is usually chosen to be equivalent to the tebof the forward rate

that shall be simulated. This does not cause any problems with volatility but with
the drift i (t) because it is dependent upon the actual level of forward rates that
are not computed between the step sizes. One possible mechanism reducing this
problem is the so-called "predictor-corrector” approximatidrThe real drift is
approximated by the average of the drift at the beginning and at the end of the step.
As the drift at the end of the step is dependent upon the forward rates at that time
it cannot be computed exactly. It is approximated applying an Euler step by using
the initial drift to determine the forward rates at the end of the step.

Since calculating the drift term takes most of the time, a possibility for speeding
up this simulation of the forward rates significantly is an approximation where
not the forward rates themselves but some other variables from which you can
compute the forward rates are evolved over tih&Vith an appropriate choice of
these variables they are drift-free under the terminal measure of the last forward
rate that is rolled out. The only difficulty is that the volatility of each forward rate

is state-dependent. Caplet and swaption prices, however, can still be approximated
efficiently from these variables and volatilities.

32 See Frio4], p. 77-80.
33 See Reb032, p. 123-131.
34 See Mey03, p. 170-177.
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2.6 Differences to Spot and Forward Rate Models

The LIBOR market model was deviated in 1997 from the HIM framework. Due
to its success and very special characteristics it is usually seen as distinct from the
original HIM framework. Its main differences to this framework te:

1. It is the only model for the evolution of the term structure of interest rates
that embraces Black’s formulae for caps or swaptions.

2. Different from most models with a lognormal distribution of interest rates
the forward rates do not explode, i.e. go to infinity, in this discretized setting.

3. The market model is easily extendable to a larger number of forward rates.

4. When calibrating the LIBOR market model traders have a large number of
degrees of freedom. This facilitates efficient methods for calibrating and
testing market data.

After this introduction to the basics of the LIBOR market model, in the next chap-
ter the problems with the volatility smile will be discussed.

35 See Mei04], p. 37-43.



Chapter 3

The Volatility Smile

When deriving Black’s formula for caplets in Sectidr2.1one assumed the exact
lognormal distribution of the forward rates. With this assumption for all strike
levels the same volatility; can be used. When computing the implied Black
volatilities of market prices with equatio2.8), however, one almost always gets
for every strike — keeping the other parameters fixed — a different volatility. Fur-
thermore, when determining the implied distribution from market prices, this dis-
tribution is not very close to the lognormal distribution. These observations clearly
contradict the underlying conditions to derive Black’s formula.

Usually, these findings are summarized by plotting the implied volatility as a func-
tion of the strike §;(K)). The result is the so-called "volatility smile”. To account
for the fact that this smile does not have its minimum for ATM options one also
uses the expression "volatility skew”.

Models that will be presented in the following chapters try to fit smiles existing

in the market in very different ways. Especially models with only one parameter
are often not able to reproduce all features of the market implied volatility smile.
For the rest of the thesis | will use the expression "symmetric volatility smile” for

the case a model only is able to generate volatility smiles with the minimum for
ATM options and the expression "volatility smirk” for the case a model implies the

minimum volatility for K — 0 or K — co. Finally, the expression "smile surface”

25
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depicts the surface spanned by the volatility smiles of caplets and/or swaptions
with different maturities and/or tenors.

For depicting these volatility smiles it is preferable to express these graphs as a
function of the standardized moneyné&ssstead of the strik& sinceM accounts
for different expiries and volatilities:

In | K

Due to the assumed lognormal distribution (anK) being the volatility of the

logarithm of the forward raté;(t)) the logarithm Ir{%} rather than the ratio

K—Li(0)
Li(0)

(3.1)

suggested inTom93] is chosen.

Another advantage of this way of presenting moneyness is the fact that — as will
be seen later in this thesis — some local volatility models, jump processes with
a lognormal distribution of the jump size and a mean of 0, stochastic volatility
processes and uncertain volatility models lead to a totally symmetric volatility
smile w. r. t. the moneyness M, i.e. for the implied volatilitys a function oM:

(M) = 6(—M).

3.1 Reasons for the Smile

Generally, there exist two possible concepts for explaining the volatility smile:

1. The underlying dynamics of the forward rates are different from a lognormal
distribution of the forward rates with deterministic and only time-dependent
volatilities.

2. The underlying dynamics of the forward rates are well enough described by
the assumptions in Black’'s model but additional effects influence the price
of options.
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The first concept immediately leads to changing the proposed dynamics of the
forward rates fromZ.2). There exist several possibilities for doing so derived
from some very strong assumptions in Black’s model:

1. Having a lognormal distribution the volatility of the logarithm of the for-
ward rate is independent of the level of the forward rate. This leads to the
volatility of the forward rate being proportional to the level of the forward
rate.

2. The volatility in Black’s model is assumed to be deterministic.

3. In Black’s model one assumes a continuous development of the underlying.

With weakening one or more of these assumptions one can change the dynamics
of the forward rates immediately leading to a volatility smile.

The second concept does not lead to a rejection of the proposed dynamics in
Black’s model but tries to explain why market prices of caplets and swaptions
do not imply a lognormal distribution but different dynamics. One possible rea-
son for that is supply and demand of caplets with different strikes. For example
in the stock market especially out of the money puts are a logical crash protection.
Since investors are stocks — at least on average — long, the demand for out of the
money puts is bigger than for other options. Investment banks trying to benefit
from that fact supply these puts hedging themselves. However, due to transaction
costs — even if market participants were certain about the lognormal dynamics of
the underlying stock — investors would be charged a premium for those puts lead-
ing, when using these market prices for calculating the implied volatilities, to a
volatility smile. Similarly, for interest rate derivatives the different level of supply
and demand of options with different strikes can cause a volatility smile.

Another possible reason for volatility smiles are estimation biases as shown in
[Hen03. Starting from the fact that both the market price of an option and the
other input parameters except the strike are typically contaminated by measure-
ment errors, tick sizes, bid-ask spreads and non-synchronous observations the
author shows that computing the implied volatility out of these data is very error-
prone leading to extremely wide confidence intervals for options in or out of the
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money. The further away from ATM options are the wider these confidence inter-
vals are as there small price differences already lead to big volatility differénces.
The bias that leads to higher implied volatilities in or out of the money than for
options at the money comes from arbitrage conditions. As prices that violate
arbitrage restrictions are not quoted and usually the lower absence-of-arbitrage
bound is violated, quoted prices and, therefore, implied volatilities have an up-
wards biag This bias exists even if the distribution would be really lognormal.

Certainly both concepts have an influence on option prices. The scope of this
thesis will be to determine what forward rate processes would imply option prices
as observed in the market.

3.2 Sample Data

The market data has been supplied by Dresdner Kleinwort Wasserstein for US-$
and< as of August 6th, 2003. The data consists of the yield curve and swaption
data in the form of a so called "volatility cube” for different expiries, tenors and
strikes.

From the existing "volatility cube” (expiry tenor x strike) missing data points

are interpolated with cubic spline methods. As differences between the grid points
in expiries, tenors and strikes are reasonably small, only a little loss of accuracy
results, especially considering bid-ask spreads of 2 up to 4 kappas (= volatility
points).

Usually in the markets there is a huge gap between caplet volatilities and swap-
tions volatilities. Since explaining this difference is beyond the scope of this thesis
the forward tenob is set to one year and available market data for swaptions for
different expiries and tenors are used as+# 1. The used data in this thesis there-
fore has more the characteristics of possible market data rather than real market
data.

1 See Hen03, p. 4.
2 See Hen03, p. 19-22.
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Figure 3.1: Contour lines of the caplet volatility surface féand USS.

When comparing the caplet volatility surfaces of the two currencies in Fjdre

one can see huge differences in the level and the shape of the volatility smile. In
the € market the volatility smiles for caplets — as can be seen in Fig§ze-

are quite pronounced even for very long expiries. In the US-$ market, however,
volatilities are much higher for short expiries but flatten out for longer expiries
quite rapidly. FigureB.1 on pageXlll shows that for some expiries the minimum
implied volatility is for caplets with the highest moneyness.

Since the volatility skews in th€ market are more demanding for a model to
replicate than the volatility smirks at US-$, during the text part of this thesis the
graphs presented are (until otherwise stated)@atata while US-$ graphs are
deferred due to space reasons to Appeflix

For swaptions close to expiry with different tenors the volatility smile flattens out
quite quickly in both markets (see Figurg8andB.?2).
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Figure 3.2: Caplet volatility smiles for different expiries.

Finally, a comparison between the implied distributions of a future forward rate
and of a flat volatility smile is given in Figur@.4.2

In the following chapters the focus of this thesis will be on testing the available
models to evaluate if they are capable of fitting the entire volatility surface at
all rather than testing how good the actual fit to a single volatility smile is. The
reason for this aim is the fact that having two or more free parameters with most
models it is not a problem to fit a single volatility smile but when pricing exotic
options, e.g. Bermudan swaptions, their value depends on numerous forward rates,
volatilities and their joint evolution over time. The difference between the later
proposed models will be more in this joint evolution as the same caplet pricing
formula can imply — depending on the underlying model — very different joint
dynamics of the forward rates. This issue will be discussed deeper in Chapter 8.

3 See also AppendiR.1.
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Figure 3.3: Swaption volatility smiles for 1 year expiry and different tenors.

3.3 Requirements for a Good Model

When trying to find a tractable interest rate model that fits market data best, several
aspects have to be considered:

1. For fast calibration efficient formulee for caplets and swaptions should be

available.

2. The model shall be used to price all possible interest rate derivatives. There-
fore, besides efficiefittormulee for plain-vanilla options one also needs a
way to simulate the evolution of the term structure of interest rates. These
simulations can be done by different methods with the Monte Carlo tech-
nigue being the most flexible considering correlations.

3. The model shall allow to price options with all possible expiries, tenors and
strikes simultaneously without the need for re-calibration.

4. For many applications like the pricing of exotic options the exact replication
of the hedging instruments like ATM caplets and swaptions is essential.

4 That can be analytic, numeric or even very good approximative formulee.
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Figure 3.4: Comparison of the densities of a future forward rate between market
data and a flat volatility smile with the same ATM implied volatility foegaaplet
that expires in 1 year.

While this holds true for all interest rate models, additional requirements for the
smile modeling are:

1. The parameters used for fitting the volatility smile should be meaningful
and stable. Their number has to be carefully chosen to ensure both a good
fit to the volatility smiles in the market and to avoid overfitting.

2. The simultaneous pricing of all derivatives mentioned in point 3 of the gen-
eral requirements is essential as some models — as can be seen in the fol-
lowing chapters — can only fit one single (= for a chosen expiry-tenor pair)
volatility smile at a time.

3. The volatility smile implied by the model should be self-similar, i.e. inde-
pendent of the future level of interest rates the volatility smile at future times
shall have a similar shape.

Certainly, one will not be able to find a model that fulfills all these requirements
100%, but these are the different aims when trying to find a good model. For a
benchmark model the actual speed of calibration is not that important.
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3.4 Calibration Techniques

There are different ways to measure the calibration quality of different models and
their closed form solutions to actual market data. In this thesis, until otherwise
stated, due to comparability the methodology is the same for all models. The fit
is measured by the least squares method, i.e. one tries to minimize the sum of the
squares of the differences between market and model prices. Unlike other papers
about these models, the price differences as opposed to the volatility differences
are chosen due to three reasons:

1. The volatility differences for ATM options are more important than for other
options. Instead of using different weights for different strikes the price
differences are chosen as the vega has maximum size at the money.

2. The calibration is faster. While this is not an issue for all models, for those
models where complex computations — especially numerical integrations —
are involved this can speed up the calibration process significantly as an
additional step with Newton iterations can be avoided.

3. The price errors are the errors that really determine the success of a model
in real trading. Therefore, it is important that the loss function when cali-
brating a model is the same as when evaluating the model.

Other possibilities might be to fit as close as possible the PDF or CDF that is
implied by market prices. Especially with the PDF, however, a good fit to this
distribution might result in model prices that are totally different.

To ensure consistent calibration criteria the models are usually calibrated through-
out the thesis at options with the following set of standardized moneynesses:

{M;} = {0,£0.25,40.5,4+0.75, +1,+1.5 +2}. (3.2)

5 See [£J03, p. 19f.
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3.5 Overview over Different Basic Models

After collecting the different requirements for the models, three assumptions of
the underlying Black model can be weakened to generate a better fit to the market
implied distribution of interest rates.

1. The diffusion part of the evolution of interest rates is no longer assumed to
be lognormal. The basic idea is to assume a normal or square-root distribu-
tion of forward rates but more general extensions can also be implemented.
All these extensions have in common that they can be written as the volatil-
ity of the logarithm of the forward rate being not only dependent upon the
time but also upon the level of the forward rate. These models are also
called local volatility models and will be presented in Chapter 4.

2. Another assumption that heavily contradicts market observations is deter-
ministic volatility. Non-deterministic volatility can then be modeled again
with a Brownian motion (uncorrelated or correlated with the evolution of for-
ward rates), with jump processes or with a jump to one of several possible
deterministic volatility scenarios (= uncertain volatility models). Chapter 5
will discuss uncertain volatility models and Chapter 6 will give an overview
of stochastic volatility models.

3. In the markets prices are fixed with the distance of at least one second. Con-
tinuous or discrete stochastic processes with a underlying lognormal distri-
bution are not consistent with the distribution of interest changes for this
minimum step size. Therefore, jump processes, one possible way to deal
with this and also with the observation of unusual big movements in the
level of interest rates due to new information usually occurring over night,
are discussed in Chapter 7.

6 The assumption of a Brownian motion for the forward rate process can be weakened, too. For
instance more general Levy processes or other distributions can substitute the Brownian motion.
As these models are far more than an extension to Black’s formulae or the LIBOR market model
they are not further discussed in this thesis. For an overview over the applications of Levy
processes in finance, se&NMRO1].
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An overview of these models and a kind of graphical table of contents is given in
Figure3.5.

These four different possible basic models and their advantages and shortcomings
shall be discussed at length in the next part. To improve the comparability between
the different models the same structure of discussion is applied to all models. This
structure can be divided into three up to five steps:

1. Rate Evolution:
The model is specified by the evolution of the forward or swap rate.

2. Pricing Formula:
For efficient calibration of the model analytic or numeric solutions for caplet
or swaption prices have to be available.

3. Calibration Quality w. r. t. a Fixed Maturity:
In this step the quality of calibration to market data for each caplet or matu-
rity separately is assessed.

4. Term Structure Evolution:
For pricing all possible interest rate derivatives in a single model simulta-
neously the joint evolution of all forward rates over time is needed usually
deteriorating the fit of each single volatility smile.

5. Calibration Quality w. r. t. the Full Term Structure Evolution:
The quality of the calibration to the complete market data is the final step in
presenting a model.

The steps four and five are left out for example when results in step three already
show how poor the fit to the volatility smile of a single expiries already is.

An additional sixth step, the discussion of how each model is able to produce a
self-similar volatility smile, is deferred to Secti@l
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Chapter 4
Local Volatility Models

Having defined the LIBOR market model and set up the desired features of an
extended model, the four different possible basic models have already been briefly
introduced at the end of the previous part. In the chapters of Part Il they will be
presented and tested. Even if none of those models alone will be able to improve
the LIBOR market model such that it fits the whole term structure of volatility
smiles, they are essential "building blocks” for generating more comprehensive
and advanced models.

As a first approach for fitting a single caplet or swaption smile, the underlying as-
sumption for Black’s formulee of lognormally distributed interest rates with state-
independent volatilities of the logarithm of the forward rates is given up. This
leads in the terminal measure to the

General Forward Rate Evolution: 7
dLi(t) .. .
To - oi (t;Li(t))dz (4.1)

with gj (t; Lj(t)) still being a deterministic function but not only time-dependent
but also dependent upon the level of the forward rate. J

The articles by Dup94 and [DK94] showed that under the assumption of having
a complete volatility surface for all strikes and all expiries there exists exactly

38
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one diffusion process that leads to the market implied distributions of the forward
rates! Dupire could furthermore derive an exact solution for computing this local
volatility function from market prices. However, since there are not all caplet
prices for every expiry and every strike available and those quoted prices would be
too noisy for computing exact local volatility functions, one usually parameterizes
these functions.

In the following sections different parametrizations f@mr(t; Li(t)) shall be pre-
sented, starting with very basic models like displaced diffusion (DD) or constant
elasticity of variance (CEV) and leading to a more advanced model.

4.1 Displaced Diffusion (DD)

At the displaced diffusion approach first presentedRnl§83 one no longer as-
sumes the lognormal distribution of the forward rates but of the variables

X (t) = Li(t)+a; (4.2)

with X;(t) evolving under its associated terminal measure according to:

dxi(t) .
X.-—(t) = Ojq(t)dz.

This has the side effect that exactly the same simulation mechanism o (th)is
can be applied as has been in the basic model for the forward;(a}e

Re-substituting;(t) with L (t) + a; leads to the process of the forward rate:

dlLi(t) +ai)  dLi(t)
Li)+ai  Li(t)+a

= 0jq(t)dz. (4.3)

Therefore, in the notation of the general forward rate evolution proposed at the

1 See [at03, p. 6-12.
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beginning of the chapter one can express the

Forward Rate Evolution: 7
—> = 0Ojpp (t;Li(t))dz (4.4)
with

Oi o; (t)- (4.5)

|

The lognormal distribution oX;(t) can be used straightforward to find an exact
and especially easy solution for pricing caplets. This certainly is one of the main
reasons for the success of this model. The payoff of the caplet inftimequals:

PayoffCaple}t, = NP3 [Li(Ti) —K]™ = NP3 [X(T) — (K +ai)]".

Hence, whilenj > —K one can easily determine the
Caplet Pricing Formula: 1
Caplet(0,Ti,5,NP K, Gj o;; 0i) = NP3P (0, Ti1) Bl (K+ a1, Li(0) + aj, Gi o, v/Ti)

(4.6)
where

|

The implied Black volatility §i(K)) can be calculated numerically by matching
these prices:

BI (K, Li(0),6i(K)v/T) = BI (K +0i,Li(0) +0i, 01, v'T;) .
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Figure 4.1: Comparison of implied volatility smiles of the forward ratg@) =
1% for differenta; with the same ATM implied volatility; (0) = 40%

These implied Black volatilities as a function of the diffusion displaceragand
the moneynesl! are compared in Figu#e 1 There it can be seen clearly that for
0 — oo arbitrary steep volatility smiles cannot be simulated.

SinceX;(t) is lognormally distributed this variable can take values fri@yw) or
from (—,0). This leads to:

Li(t) € (—aj,0) if Li(0) < —ai,
Li(t) € (—o0,—aj) if Li(0) > —a;.

That means thati; > 0 or a; < —L;(0) imply a positive probability for interest
rates becoming negative. When calibrating this model to market data usually a
positive value for; provides the best fit. This unrealistic behavior is the biggest
drawback of the displaced diffusion approach.

Calibration Quality w. r. t. a Fixed Maturity

When calibrating the displaced diffusion approach to caplet volatility smiles one
can realize in Figuré.2 two drawbacks of this model. First, the forward rate
dependent parametey alone is not sufficient for providing a good fit to the whole
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Figure 4.2: The fit across moneynesses to the market implied caplet volatilities
with the displaced diffusion model for different expirias.= 6.6%, a, = 13.4%,
o5 = 13.9%andayy = 768%

volatility smile as this parameter leads to an almost straight line for the volatility
smile. Second, the calibration results are very unstable since a set of moneynesses
different from @.2) would imply different weights for the in, at and out of the
money parts of the volatility for the calibration procedure and therefore lead to
different parameters;.

4.2 Constant Elasticity of Variance (CEV)

Another very basic model that can generate volatility smirks for caplets is the CEV
model. For the LIBOR market model it was developedAwd7] building on the
model in [CR74 for equity derivatives.

In this model the forward rati (t) evolves in the terminal measure according to:

dLi(t) = [Li(t)]" 61y dz (4.7)
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with0 <y <1.

The lognormal §; = 1), the square-rooty(= %) and the normaly{ = 0) distribu-
tion are special cases of this model.

For presenting the local volatility function more clearly a different notation of the

Forward Rate Evolution: B
dLi(t)
——2 = QOj t;Lj(t))dz 4.8
0 icev(t;Li(t))dz (4.8)
with
oicev(tLi(t) = [Li®)] oy (4.9)
is preferable. J

At the first sight this CEV model seems more appealing than the previously dis-
cussed DD model, as it prohibits interest rates from becoming negativg ffd@).
However, for O< y; < 1 there is a positive probability of the forward ratgt) at-
taining 02 Fory;, > % this is an absorbing barrier of the stochastic differential
equation. As has been shown B394, however, the process does not have a
unique solution for < y; < % To ensure a well-behaving process the absorbing
boundary condition at 0 is added. Therefore for aft §; < 1 there is a positive
probability ofL;(t) reaching the "graveyard state” 0. This is a disadvantage of this
model, but certainly easier to neglect than possible negative interest rates in the
DD model.

The simulation of the evolution of the forward rates in a discretized timeframe is
unlike in the basic LIBOR market model or in the displaced diffusion extension
no longer exact, that means small time steps have to be used for simulating the
forward rates. However, even with extremely small time steps a naive implemen-
tation of this process can lead to negative interest rates (and in the following step
to an error when trying to compute(t)¥).

2 See PA97], p. 8f, 34f.
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For example in the case of the square-root process discretized with the Euler
scheme:

Li(t+4t) = Li(t) + v/Li(t)oi 120 (4.10)

this problem can be solved by usirg|L;(t)| instead ofy/L;(t), but this "mirror-
ing” of the process is not exact. A further improvement of the accuracy of the
process can be obtained with the Milstein scheme instead of the Euler séheme:

Li(t+At) = Li(t)++/Li (t)0i71/2Azi + %051/2 ((Azi)2 —At)

e 1

with x; being aN(0, 1) distributed random variable.
In this model one can use for gl (0,1) an exact

Caplet Pricing Formula: B

Caplet0,Ti,5,NP K, 0i; i)
= NP3P(0,Ti11) (Li(0) [1-X*(a,b+2,c)] —KX?(c,b,a)) (4.11)

where

K2(1-v) 1 Li(o)Z(l—w)
C —

(1—vi)202T’ 1-v’ (1—v)20?Ti’
|

According to Pin89] for the x? distribution there exists a Second Order Wiener
Germ approximatiot:

OV s>1
X2(x,v, &) = 1 s=1 (4.12)
d(—/S s<1

3 See Fri04], p. 79f.
4 See PROQ, p. 3f.
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where
< — v/ 1+ 4xp/v —
= o
1 1 2h(1 2
S = V-1 <25 ) [S sl+zusﬂ+\_’8(s>’
h(y) = %K%—l)ln[l y]+1]—%
with
H = év
ae — _31+4us 5(1+ 3us)? 2(1+3ps)
(s) = C2(1+2us9)2 T 3(1+2us3 ' (s—1)(1+2u9)?
P I ¢ £\ (1)L
(s—1)%(1+2u9  2(s—1)2(1+2u9)’
. 1+2pus—2h(1—s) —s—2pus

1+2pus—2h(1—s)

Possible volatility smiles from this model are presented in Figug There it

can be seen that similar to the Figurd for the DD model only volatility smirks

can be generated and that there is a limit for the steepness of the volatility smile
created.

The absorption of the forward rate process in 0 is empirically questionable but
even more might have undesirable effects on the pricing of exotic optidfus.
avoid this problem the limited CEV (= LCEV) model has been introduced. The
positive probability of reaching 0 is avoided by introduciagvhich is a small
positive fixed number and choosing the local volatility functiorf as:

oiLcev(t;Li(t)) = [max{e,Li(t)}]¥ toiy. (4.13)

This leads to the fact that the caplet pricing formula in equatdonlj is no longer
exactly valid but can still be used as an approximation in the calibration process.

5> See BMO01], p. 276.
6 See pA97], p. 14.
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Figure 4.3: Comparison of implied volatility smiles of the forward ratg@) =
1% for differenty; with the same ATM implied volatiliy1 (0) = 40%

Calibration Quality w. r. t. a Fixed Maturity

When calibrating this CEV model to market data one can see the same drawbacks
of the model as for the DD model. First, the paramstes not sufficient for
providing a good fit for market data. Second, the calibration is very dependent
upon the set of moneynesses the model is calibrated to.

4.3 Equivalence of DD and CEV

In the two previous sections the calibration results for the DD and CEV model
have been presented. Obviously, both models have similar calibration properties.
In fact, as has been shown M&r99, these two models are almost equivalent.

Setting in equation4.2)
Bi '

aj =
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Figure 4.4: The fit across moneynesses to the market implied caplet volatilities
with the constant elasticity of variance model for different expirigs= 0.31,
yo = 0.18, y5 = 0.20andy,o = 0.03.

and inserting equatior(14) in (4.3) gives:

dLi(t) = [Li(tH)+ |

2Ll gz, (4.15)

Hence, one can write for the displaced diffusion model an alternative

Forward Rate Evolution:

d:%ét)) = 0ipp(t;Li(t))dz (4.16)
with
oi,pp(t; Li(t)) = Bi"‘(l—Bi)% Oip- (4.17)

|

Using this notation, fof3i = 1 the forward rates are exactly lognormally dis-
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Figure 4.5: Implied caplet volatilities for different values pf (DD) andy; (CEV)
with the same ATM volatilitg1 (0) = 10%

tributed, forf3; = % they almost follow the square-root process andffpe= 0
they are normally distributed. As can be seen in Figugg settingy; = i leads

to very similar distributions and volatility skews for the DD and the CEV model.
Since forB; =y, = 0 andBj = y; = 1 the two models are exactly equivalent, the
small implied volatility differences are biggest for values between 0 ahd 1.

This alternative notation wit; has some advantages over the original notation
with a;. First, the normal distribution can be expressed exactly, not only approxi-
mated foro; — . Second, while in4.15 (3 is usually chosen to & € [0, 1] this
equation can also be used for larger domaing;ofNegative values of; might

be especially desirable. It has to be noted that for negative valygsacstatel;
exists where:

Bili + (1—Bi)Li(0) = O.

This state has the unrealistic behavior of being a fix point, i.e. a forward rate with

7 See Reb03, p. 356-359.
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the actual valug; = (1 - é) L;(0) cannot leave this state. However, as this state
is not attainable it is sufficient to ensuBeis a sufficiently small numbér.Third,
the volatility o; g, has the same magnitude independent of the chgsérhe only
disadvantage is that the exact lognormal rolling out of the forward rate is no longer

possible.

Comparing the CEV and the DD model, the CEV model lends itself more to an
intuitive (and exact) interpretation regarding the normal, square-root and lognor-
mal distribution it embraces. Furthermore, interest rates cannot get negative. The
problems with the absorbing barrier at 0 and the better tractability of the DD
model usually lead to the preference for evolving the forward rates over time with
a displacement. Independent of the choice of the model as the biggest drawback
remains the inability of both models to fit an existing volatility smile as these two
basic models are only able to generate volatility smirks.

4.4 General Properties

The class of local volatility models is very flexible. The volatilgy(t;L;(t)) can
be parametrized in different ways, for example:
L (t
aitiL) = 1- (4.18)
|
with u; > 0. In this model O is the lower ang is the upper boundary for the
forward rate. Both boundaries as has been shownng9[/] are unattainable.
Generally, to avoid negative interest rates one has to assure the condition

Li(t)oi(t;Li(t)) = 0  for Li(t)—0 (4.19)

is fulfilled.1?

8 This effect is an exact consequence of the domaia; () in the first definition of the dis-
placed diffusion model. See alsBif034, p. 5.

9 For an overview seeZuh03, p. 6-11.

10see pA02), p. 163.
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Other specifications faw;(t; Lj(t)) enable local volatility models even not only to
generate volatility smirks but also volatility smiles. With an increasing number of
parameters one is able to fit the market implied volatility smile better and better.
Especially in lattice methods, e.g. Markov-Functional motelkis way of smile
modeling is widely used.

The main problem of local volatility models is that the generated smile will be non-
stationary, i.e. the smile would not move when the interest rate moves. Therefore,
such a model might be able to fit a certain volatility smile extremely well but
might fail in providing a good estimate of future re-hedging costs. This issue will
be discussed further in Part Ill.

4.5 Mixture of Lognormals

Another very different local volatility model was presented BM004. In this
approach the evolution of interest rates does not follow a single lognormal distri-
bution but a mixture oN lognormal densities with volatilities; j(t) and positive
weightsp ; under the conditioy )", pi j = 1.

These assumptions lead in the terminal measure to the

Forward Rate Evolution: 12 .
dL;(t)
—> = Gj t;Li(t))dz 4.20
Li(t) iMoL(t; Li(t))dz ( )
with

NI 10 Lt
Zj—lpi,j#Jexp{—Ezl_Ti (In T())}jL

N Li(t 2
R e G IRE 5L

oimoL(t;Li(t)) =

11 See HKPOQ.
12 see BMO1], p. 277-280.
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where

For these dynamics one can write this easily computable
Caplet Pricing Formula: 1

N

Caplet(0,T;,5,NPK, Gi; Pi) = NPSP(0,Ti11) Y pijBI(K,Li(0),0ijv/T).
j=1

(4.22)

J

The implied volatilitiess; (M) for the moneynesh! as defined in3.1) are approx-
imated via:

ﬂeig(aﬂomgj) _ 1} } +0(M%) (4.23)
where the implied volatility foM = 0 is given explicitly:

6i(0) = %Cb‘l (Z qu)(daﬁ)) . (4.24)
i i—1

The border cases are given by:

M|inl Gi(M) = max{0i 1,...,0i N} (4.25)

Calibration Quality w. r. t. a Fixed Maturity

When calibrating this model usually three different volatilities are sufficient. For
Pi,j = % andag; 2 = 6;(0) the other two volatilities can be quoted with a single

13 See Bat01, p. 3.
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Figure 4.6: The fit across moneynesses to the market implied caplet volatilities
with the mixture of lognormals model for different expiri@s= 57% 0, = 45%
05 = 36%and By = 19%

parameteB; as the most important implied volatility is the ATM-volatility (0).
To retain this volatility one can compute for a chosgn = 6; 0 » using @.24):

o3 = %q)l <2q) <0i,22\/'|_'i) _ o <M>) , (4.26)

The further generated Black implied volatilities can be calculated with equation
(4.23. This procedure is especially noteworthy since it enables to separate the
steps of first calibrating the ATM-volatilities with the plain-vanilla caplets and
swaptions and then building on that calibrating the different smiles. When com-
paring the quality of the fit to a single volatility smile with other models, however,
the calibration should not be carried out in this way as the result might clearly
penalize this model as it would not have been calibrated to minimize the loss
function computed as described in Sect®a

Calibrating this model with the one free paramedleto market data leads to ex-
actly symmetric smiles and hence is not able to fit market data having a volatility
skew as can be seen in Figut& and even more clearly in Figui5b.



CHAPTER4. LOCAL VOLATILITY MODELS 53

This drawback of the basic mixture of lognormals model led to an extension that
has been proposed iBMOOb]. Combining the "mixture of lognormals”-approach
with another local volatility model, the displaced diffusion technique, provides a
better fit to caplet volatilities as it enables the model to have the minimum implied
volatility at a strike different from ATM and thereby generating the usual volatility
skew in the market?

This leads in the terminal measure to a shifted (compared. &)}

Forward Rate Evolution: L
dL;(t
';() = 0imoLDD(t;Li(t))dz (4.27)
Li(t)
where L)
Oimol.op(t;Li(t)) = Woi,MoL(t;Li(t)nLai). (4.28)
|
|
The resulting
Caplet Pricing Formula: B

Caplet(0,T;,3,NPK, oi; i, )
N
= NP3P(0,T+8)) pijBl (K+a;,Li(0)+0i0ijvT). (4.29)
=1

for the extension is therefore a blend of the basic "mixture of lognormals”-model
and the displaced diffusion formula. J

For a formula for the implied Black volatilitg; (M), see BMO01], p. 281.

14 See BMO1], p. 282.
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Figure 4.7: The fit across moneynesses to the market implied caplet volatilities
with the extended mixture of lognormals model for different expifies= 35%,

6'171 = 180/0, 6172 = 410/0, Bz = 270/0, 6'2’1 = 120/0, 6'272 = 370/0, [35 = 310/0, 6'571 =

7%, 6’572 = 26%, 320 = 0.4%, 6'2071 = 2%and 62052 =17%

Calibration Quality w. r. t. a Fixed Maturity

For calibrating this model only two lognormal densities were chosen. For clearer
guotation all parameters are given level-adjusted via:

- Lo
Bi = GO +a’
Li(0) + qi;

o= ST

The fit both to€ (Figure4.7) and US-$ (FigureB.6) caplet volatility smiles is
extremely better than with the previous models since this extended mixture of
lognormals model can generate smiles with the minimum implied volatility at
almost every reasonable moneyness.
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4.6 Comparison of the Different Local Volatility
Models

In this chapter different local volatility models have been introduced. The very
basic displaced diffusion and constant elasticity of variance approaches have only
one free parameter and hence are not very flexible regarding the generated volatil-
ity smiles. However, especially the DD model due to its extremely good tractabil-
ity considering both mathematical and simulation properties is a candidate for
enhancing other models.

A first example is the mixture of lognormals model that can in the basic version
only generate symmetric volatility smiles. Combing it with displaced diffusion
leads to a local volatility model that is able to fit market implied volatilities very
well while having an easy Black-based caplet formula and a straightforward sim-
ulation mechanism.

All possible local volatility models share the drawback of a non-stationary volatil-
ity smile. That is when interest rates move the smile does not move. Therefore,
the models are not able to produce self-similar smiles, i.e. future volatility smiles
do not look similar to the current volatility smile independent of the future level of
interest rates. This drawback while being inevitable when valuing derivatives in
a one-dimensional lattice is avoidable in Monte Carlo simulations. Hence, other
extensions of the LIBOR market model should offer more realistic market dynam-
ICS.



Chapter 5
Uncertain Volatility Models

While in the previous chapter local volatility (i.e. deterministic volatility) models
have been discussed, in this and the following chapter non-deterministic volatility
models shall be presented. The assumption of the local volatility models has been
that the volatility at a certain time in future is a function of the level of the forward
rate at that time. When assessing historical market data, however, this exact depen-
dency cannot be observed. The volatility seems to fluctuate quite independently
making future volatility non-deterministic when rolling out forward rates in the
model. Generally, there are two possible ways to model this fluctuation. The eas-
iest approach is to assume that volatility of today will jump shortly after today to
one of several possible scenarios (= volatility levels). The advanced approach of
volatility having its own stochastic process will be discussed in the next chapter.

Uncertain volatility models were presented ®&4t0] and BMRO03] suggesting
in the terminal measure the following

Forward Rate Evolution: B

dL(t) _ { 0; dz t € [0, €] (5.1)

oi(t)dz t>¢

with oj(t) being a discrete random variable, known fat €, independent of the
Wiener processzj that is drawn at time. The volatility oj(t) is drawn out of a
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finite number of possible volatility scenarios:

(t—0oi1(t)) with probability p; 1

e oi(t)) = (t—0oi2(t)) with probability p; -
! - . .

(t—oin(t)) with probability p; N

wherep; j is strictly positive withz’j\‘:1 pij=1. .

The resulting process leads to a mixture of lognormal densities and therefore to
the

Caplet Pricing Formula: B

N
Caplet(0,T;,3,NPK, Gi; Pi) = NP3P(0,Ti1) Y pijBI(K,Li(0),0ivT).
-1

T 2
o = I o oi’j(u)du
’ Ti

whereag j(t) is set too; fort < €. N

(5.2)
with

Since this pricing formula is the same pricing formula as presented in Séc&on
the same properties for implied volatilities as shown in equatiér3(to (4.25
are valid.

Calibration Quality w. r. t. a Fixed Maturity

Due to the exact equality of pricing simple exotic derivatives as in the local volatil-
ity model the fit to caplets in both markets is the same as already shown in Fig-
ures4.6 andB.5. To improve this fit one could again mix this model with the
displaced diffusion approach as has been donéd 29 to obtain a good fit to
market data as shown in Figuré<s andB.6.
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In spite of these equalities, however, there are a two big differences between those
two models with the exact same pricing formula for caplets:

e EXxotic option prices can in the uncertain volatility model just be calculated
as a mixture of prices for only time-dependent volatilities while in the local
volatility model always numerics are needed to price more complex deriva-
tives.

e The proposed dynamics for the forward rate is different. In the local volatil-
ity model it will be dependent upon the level of the forward rate while in the
uncertain volatility model the future will be independent of this level. This
difference will be discussed at length in Chag@er

1 See BMRO3], p. 5.



Chapter 6
Stochastic Volatility Models

After the very basic uncertain volatility model in this chapter stochastic volatil-
ity models shall be presented. At the beginning models for equity options are
introduced, after that two very basic models are discussed leading to an advanced
model that also can incorporate the skew in stochastic volatility models.

6.1 General Characteristics and Problems

For modeling a continuous movement of the volatility again — as for the stock
price or the forward rate — an Ito diffusion can be used. Several stochastic volatility
models with different process for the volatility/variance have been proposed e.g. in
[HW87], [Hes93 and [SZ98. The problem there is to choose an appropriate
process the volatility or variance should follow. This can hardly be determined
as volatility is not directly observable in the market and has to be computed by
time series analysis (= historical volatility) or market prices of options (= implied
volatility). Unfortunately, these two ways of extracting volatilities from market
data almost always leads to very different values for each stock, index or forward
rate. While it has been found that different models with stochastic volatility and
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correlation perform equally well for most optiohsnathematical properties are
also very important to ensure correct pricing of all options in the market.

The importance of the stochastic volatility is most obvious when assessing the
hedging activities and margins of the traders. In deterministic volatility models
option prices are computed putting a probability of zero to volatilities different
from the calibrated one. Therefore, traders have to shift the volatilities manually
to calculate the risk of changing volatilities and to determine the correct hedge for
that. Since this hedge is only correct in a static sense traders tend to avoid or to
charge for options where this risk is not in their favor.

Besides this Ito diffusion another possibility of modeling volatilities that change
their level again and again in future are jumps of the volatility Iév€bmpared to

an Ito diffusion as driving process for the volatility the main drawback is reduced
tractability and less intuitive parameters. As these Ito diffusions — as will be shown
in the following sections — are already producing an acceptable fit to smiles in the
market this line of modeling shall not be pursued further in this thesis.

6.2 Andersen, Andreasen (2002)

There have been many approaches for pricing derivatives in a stochastic volatility
context. The work intHes93 was a milestone as for the first time one did not
have to use approximations to solve the partial differential equations with finite
difference schemes or to use other inefficient methods but could compute an ex-
act solution derived via Fourier transformation. Building on this original model
and further work in ABRO1] a model for forward and swap rates with an exact
solution for caplets and swaptions was presentedADp].°

1 See BS99, p. 22f.

2 See alsoAP04.

3 See Reb03, p. 370.

4 See Nai93, p. 1972.

5 In this section only the stochastic volatility part of the model suggestedAf®] is discussed.
Combined models will be presented in Chaj@er
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In the respective swap rate measure one can give the

Swap Rate Evolution:

dSs(t) = Ss(t)orsy/V(t)dzs (6.1)
with
dVv(t) = k(V(0) —V(t))dt +&/V(t)dw (6.2)
where

m
Or sk
er,S = Z O_rsdz(k)v
k=1 ’
m

2 2
0r7s = Zcr7$k7
k=1
Orsk = the time-constant volatility of the logarithm of
the swap rat& s(t) coming from factok,
dw = the Brownian increment for the variance pro-
cess and independent fronz,d
K = the so-called reversion speed witle [0;2),
€ = the so-called volatility of volatility.

|

When simulating a forward rate over time with Monte Carlo techniques in the
basic model, jumps from one reset date to the next are sufficient when using the
appropriate correctiorfs.Special care has to be taken, however, when applying
these discretization techniques for models with stochastic volatility as at the end
of the discretization interval one not only has to account for changed forward rates
but also for changed volatility levels (that had been piece-wise constant at the
basic LIBOR market model). Since very often — like in this model — the stochastic
volatility process is not lognormally or normally distributed, usually smaller steps
for both the forward rates and the variance are chosen to ensure high accuracy of
the simulation.

6 See Chapte?2.5and [Reb03, p. 123-131.
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For the above model one can derive the exact

Swaption Pricing Formula:’ 1

Swaptiorf0, T, Ts, NP K, 0y s; K, €)
s—1
= NP3 P(0,Tiy1)f(Ss(0), Tr.K, s K, €) (6.3)

i=r

where the following inverse Fourier integral has to be comp#ted:

© A(3-i0)In[Ss(0)/K]
K / el H(0, w)dw

f(Ss(0),T,K,OrsK,€) = S’S(O)_ZT ——
oo 1

- Ss(0) [ coswy/e
= S"S(O)_Z—n/m o)2+%1 H(O,w)dw (6.4)

with i = v/ —1.

The function
H(O, (.0) _ eﬁ(O&))JrB(O,&))V(O) (65)

can be computed asandB are the solutions to differential equations:

A

‘i—t = —kV(0)B, (6.6)
B 1,/ , 1 1,5

a — EGES <(D "‘Z) +KB EE B . (67)

Equation 6.7) corrects an error in the original articleANA02], p. 165).

The final conditions are given as:
A(Tr,w) — O7 B(Tr,(k)) — O

Closed form solutions exist for time-constanis that can be iteratively used for
piece-wise constamt, s(t) as shown in AppendiR.3. N

7 See PAO2], p. 164f.
8 See [Lew00Q, p. 54, 59, 330f.
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The performance and stability of computing equatiérif) can be increased by
splitting the value of the integral into the Black price=€ 0) and to the model
induced difference:

f(S.5(0),T,K,Ors K, €)

= Bl(K,Sr’S(()),V)_SF,S(O) “ Coswy/@

2 J_w 0P+ 1

(H (0,0) — e—(wz+%>vz/2) do (6.8)

with .
V2 = / ofV(0)du = o7V (0)T;.
0

A technique for efficiently performing this numerical integration is presented in
AppendixA.2.

Calibration Quality w. r. t. a Fixed Maturity

When calibrating this model special care has to be taken considering the parame-
tersk ande. These two parameters determine the model implied volatility smile.
Since the effect of a change of one of these parameters has only a slight impact
on the shape of the smile and can also be compensated by a change of the other
parameter for every single caplet smile there exists magwpairs that almost gen-

erate the same volatility smile. Therefore, and due to the reason that there is only
one stochastic volatility process that has to be valid for all caplets and swaptions
thek-g-pair is chosen which simultaneously fits all regarded options best.

In the original model there is even an additional free parameter, the so-called
reversion level, instead &f(0) that also influences the volatility smile. To avoid
overfitting this parameter is set in all stochastic volatility models in this thesis to
the actual level of the volatility proce$50).

As can be seen in Figurés1 and B.7 the stochastic volatility model can only
generate symmetric volatility smiles providing an insufficient fit to real market
data.
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Figure 6.1. The fit across moneynesses to the market implied caplet volatili-
ties with Andersen/Andreasen’s stochastic volatility model for different expiries.
O12 = 31% 023 = 27%, O56 = 20%, 02021 = 13% kK = 4% ande = 100%

In order to generate volatility skews with the stochastic volatility model one can
introduce a correlation between the processes of the variance and of the forward
rates (Sectiol.4), combine it with jump processes and constant elasticity of vari-
ance (Sectio®.1) or combine it with displaced diffusion (Secti@®).

6.3 Joshi, Rebonato (2001)

Another very basic stochastic volatility model presentedJiRq] shall be dis-
cussed only briefly as no closed form solutions for caplets or swaptions exist. In
this model the authors build on the term structure of volatility define®ifhj

where these four parametexsh, ¢c andd instead of the general level of volatility

as in the previous model are assumed to be stochastic following their own process
with individual volatility, reversion speed and reversion level.
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These characteristics leads to the following

Forward Rate Evolution: B
dLL—(f)) - 6i(t)da (6.9)
where
ai(t) = [at)+b(t)(T—t)]e WY 1 d(t),
da(t) = ka(ap—a(t))dt+o,dz,,
db(t) = Kp(bo—Db(t))dt+opdz,
dinfc(t)] = Ke(In[co] —In[c(t)])dt + ocdz,
din[d(t)] = kq(In[do] —In[d(t)])dt+ ogqdzy.

The Brownian increments of these four additional processes are uncorrelated both
among each other and with the Brownian motion driving the forward rate. _

With the starting valua(0), the reversion speed,, the reversion levedy and the
volatility o, (respective fob, c andd) there are altogether 16 free parameters that
can be calibrated to fit the market prices best. As this number is certainly abundant
the first step to reduce this number is usually to set the reversion levels equal
to the starting values (e.@p = a(0)). For increasing stability of the calibrated
parameters, usually only factdiis kept volatile what deteriorates the fit to market
implied volatility skews only slightly but also reduces the model to a similar but
less tractable version of the Andersen/Andreasen’s niodietlependent of how
many and which parameters are free to calibrate, due to the uncorrelated Brownian
increments this model can only produce symmetric volatility smiles.

Due to the lack of closed form solutions for caplets and swaptions the calibration
procedure has to be carried out numerically. While this is certainly less accurate
and has higher computational costs it can be done quite efficiently by:

1. Simulating volatility paths (around 64 sample paths are sufficiént),

9 See JRO1, p. 33.
10see PRO1T, p. 18.
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2. Integrating these paths numerically for each expiry,
3. Calculating the caplet prices as an average of the prices for each path,

4. Determining the sum of the absolute or squared differences between market
and model prices,

5. Repeating steps 1-4 to calibrate the free parameters by minimizing the sum
calculated in step 4.

6.4 Wu, Zhang (2002)

The main drawback of the two previously discussed models is their inability to
fit a volatility skew. One possibility to model this skew is by assuming a corre-
lation between the driving processes of interest rates and volatility. While there
seem to be logical reasons for assuming this correlation between the underlying
process and its volatility in the equity wotfdthis fact is rather controversial in

the interest rate world. For instance empirically it was showrCi8Q] that "the
correlations between short-dated forward rates and their volatilities are indistin-
guishable from 0.2 However, the ability to fit market data without having to mix

a stochastic volatility model with one of the other basic models outweighs these
concerns.

Since for correlated processes a change of measure has influence on both pro-
cesses, it is preferable to start in the spot measure to ease a simultaneous simula-
tion of all forward rates later on. This leads in the spot measure to the following
dynamics for the forward rates and the variance:

T = W(t)V(t)dt+aoi(t)\/V(t)dz, (6.10)
dv(t) = k(V(0)—V(t))dt+e\/V(t)dw (6.11)

where the correlation between the two Brownian increments is denotgga/ty .

11 See Mei03], p. 34.
1235ee PLZ02, p. 8.
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Changing to the forward measure results in the

Forward Rate Evolution: 7

O'L'f;(g) = 6i(t)/V(1)dz (6.12)

where the variance evolves like
dVv(t) = [kKV(0) — (K +€&;(t )] dt + €&/ V(t)dw (6.13)

with

zl:él—k Prv (t (t).

— 1+ dL(t)

To retain analytic tractability the forward ratesgiit) are frozen at time O:

ey L 3Li(0)pry (t)ok(t)
&it) ~ k; T oL 0 (6.14)
Substituting N
&) = 1+ &)
leads to:

dv(t) = k V(O)—Ei(t)V(t)} eV (D)dw. (6.15)

For this model one can then write the

Caplet Pricing Formula: 1

Caplet0,Ti,8,NP K, 0i;K,&,piv) = NPOP(0,Ti;1) (Li(0)[11 —KTI2) (6.16)
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where
@ Im{ e/ O]y (1+iu)
n, = }+3/ i }du, (6.17)
2 T 0
1 1 (<) |m e—lu|r'l[K/L hp_l_l(lu)}
M, = =4+= A
2 2+1T/0 du (6.18)
with
Im{z} = the imaginary part of the complex number
Yr(z) = T+BT2V(0) (6.19)

A andB follow the differential equations far being the time to expiry:

dA

— = kV(0)B

dt KV(O)B,

dB 1 : 1

o = ésZBZJr(pi7v£0iZ—KEi)B—|— EO.iZ(ZZ_Z)

with the initial conditions:
A(0,z) = 0, B(0,2z) = 0.

Following AppendixA.3 one gets for piece-wise constant coefficients:

_q: (1T
AT,z = A(T},2) K\igo){(a+d)(r—n)—2ln[lih_;ec;j)]},

(a+d—e2B(1},2)) (1_ed<f—fi>)
g2 (1—g;el=1))

B(t1,2 = B(1},2+

where

a = Kgi—pi.,VEGiZ,
d = /a2 o222




CHAPTER 6. STOCHASTIC VOLATILITY MODELS 69

and

~ a+d—€?B(1},2)
9 = a—d—¢2B(1j,2)

Furthermore, using?(18 one can determine an approximative

Swaption Pricing Formula: 1

S
Swaptiorf0, Tr, Ts, NP K, 01 s K, €, prsv) = NP3 > P(0,Ty) (Ss(0)11 — KMy)

i=r+1
(6.20)
where

1 1 () |m{e7iu|n[K/S‘,S(0)hPTr (1—HU)}
M = S+ d 6.21
1 > + T[/o y u, ( )

1 1 [° |m{e—iuln[K/Sr7s(O)}qJTr(iu)}

M = S+— du. 6.22
2 2 + T[/O u u ( )

The coefficients used for solving equatighi9 are then substituted by

s—1
Gsll) = 1+> w(0E().
SO0
Gr,s(t) = 8;75(0) )
X @(O)Li(0)gi(t)pit)
Pl = TS (0o
with o (0) is given in equationZ.19 andwy;(0) in (2.22). J

Additionally, it has to be noted that in a stochastic volatility model with correla-

tion the market is not complete anymore since risk-neutral valuation is not possi-
ble!* For hedging an option a money market account and the underlying stock
or forward rate are no longer sufficient but a second option is needed that already

13 5ee Wz02), p. 12-14.
14 See Reb99, p. 88.
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implies the so-called market-price of ri$k.For the special case where the corre-
lation is perfect p = 1), this second option is not needed as this model then is
reduced to local-volatility model that has been described in Chdpter

Calibration Quality w. r. t. a Fixed Maturity

Since in this model the closed form solution is valid for piece-wise constant param-
eters for the volatilityo;j (t) and the correlatiop; v (t) a set of time-homogeneous
parameters is straightforward to calibrate to. Therefore, the discussion of the cali-
bration quality for a single volatility smile is deferred to the tests of the calibration
quality w. r. t. the full term structure evolution.

Term Structure Evolution

When simulating the forward rates simultaneously the correlation between the
variance and the forward rates has to be taken into consideration, too. As usually
the number of Brownian factons is smaller than the number of forward rates

nin a simulation the parametepgyv, p2yv, ..., Pny Can not be rebuilt exactly.
Similar to the factor reduction for the basic model these correlation coefficients
are reduced to a smaller number of factors. The process can then be simulated as
described for the basic stochastic volatility model.

Calibration Quality w. r. t. the Full Term Structure Evolution

When calibrating this stochastic volatility model one has again to take special care
of the parameterg ande. These parameters have to be identical for all different
expiries. As the parametegg andp;jy can be used in the caplet pricing formula

as time-homogeneous parameters, the Figar2end B.8 were simultaneously
calibrated. The results for thé-data are a very close fit to market data. For
US-$ this fit is not sufficient since the skew seems to strong to be fitted by the
correlation.

15 This can be seen clearly when deriving the partial differential equation for Heston’s model in
AppendixA.4.
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Figure 6.2: The fit across moneynesses to the market implied caplet volatilities
with Wu/Zhang’s stochastic volatility model with correlation for different expiries.
01 = 33% prv = —35% 02 = 28% pov = —41% 03 = 22% p3v = —41%

04 = 18%, Pav = —37% K = 19%ande = 160%

6.5 Comparison of the Different Stochastic Volatil-
ity Models

Two main models have been introduced in this chapter. The basic model by Ander-
sen/Andreasen without correlation is only able to produce a symmetric volatility
smile. Besides mixing this approach with other basic models — as will be done in
the third part of this thesis — one can also generate a volatility skew by correlating
the volatility and the forward rate driving Brownian motions. Due to the market
implied lower volatility for caplets out of the money this correlation is negative.
The time-homogeneous fit to market data in this model is at least fe€tiata

very good.

The problems with Wu/Zhang’s model, however, are a relatively time-consuming
caplet pricing formula and also a very time-consuming and inefficient simulation
of the forward rates as in this case the volatility paths cannot be simulated sepa-
rately or be used for more than one forward rate path, but have to be computed
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simultaneously with the forward rates. Two further minor disadvantages of this
stochastic volatility model with correlation are the non 100%-exact caplet pricing
formula and the fact that the calibrategy (t) can not be simulated in a factor
reduced model exactly.



Chapter 7
Models with Jump Processes

After testing in the previous chapters three different basic classes of models that
modify volatility directly, models with jump processes as the last basic approach
shall be presented in this chapter. With introducing jump processes to the evolu-
tion of the forward rates the assumption of a continuous evolution of forward rates
over time is no longer retained.

First a general overview of these jump processes and reasons for their occurrence
is given. Then the basics starting with Merton’s formula are presented leading to
more and more complex models. At the end of the chapter these different models
are compared.

7.1 General Characteristics and Problems

The assumption in Black’s formula of a continuous movement of the forward rates
IS not given in reality. The tick size and the time discretization of one second at
exchanges are contradicting this assumption but this influence on prices is usually
negligible. The real problems are, first, big movements of forward rates for this
minimum step sizes due to new information during the opening hours and second,
the closing times over night that lead to a jump every morning the exchange opens
due to market movements that happened on other market places all over the world.

73
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Big movements in the markets are mainly information induced. In the stock mar-
kets this information is usually a stock related announcement such as quarter earn-
ings, a new analyst report or hostile bids. For fixed income securities mainly
macroeconomic news have such a big effect on forward rates. One of the possible
sources are the government rates announced on a regular basis by the European
Central Bank (= ECB) for th& or by the Federal Reserve Bank for US-$. This
regular announcement combined with the fact that the government rates have a
big tick size with 25 basis points leads to frequent jumps in the forward tates.

Furthermore, a study about the volatility smile in the stock option markets shows
that the kurtosis of the distribution of stock returns is significantly higher for the
overnight and weekend time where the exchange is closed than for the opening
hours? Since this fact can hardly be modeled by assuming a continuous move-
ment of stocks during the closing times, it additionally amplifies the idea of jump
events having an influence on interest rates when assuming that fixed income and
stock markets are similar.

7.2 Merton’s Fundament

The basic work for modeling jumps of the underlyings of financial derivatives has
been done inNler76 where the assumption in the Black-Scholes model of a con-
tinuous development of stock prices is alleviated. The usual movements in stock
prices are still described by a Brownian motion but for the unusual movements a
Poisson process is introducéd.

A Poisson process is an integer-valued non-decreasing stochastic process with the
parametel, the so-called arrival rate. This parameter denotes the expected num-
ber of events per unit time Witg\ being the expected time till the next jump, the
so-called interarrival time. This interarrival time (= for instance the time between
the 2nd and the 3rd event) is exponentially distributed. Due to the independent

1 See Muc03, p. 7f and Man03, p. 18f.
2 Discussion by Robert Tompkins at the MathFinance Workshop 2004, Frankfurt.
8 See Fri03)], p. 3f.
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identically distributed (i.i.d.) jump times a Poisson process is memoryless, i.e. the
expected time till the next jump at a certain point of time is independent of when
the previous jump has occurred.

These Poisson distributed number of jumps per time interval can model the arrival
of an important piece of information for the underlying stock. The intensity of
these events, the so-called arrival rate, is denoted,lihe random number of
jump events up to tim& is denoted byNt. The probability ofn jumps during a
certain period of time can then be given by:

e—)\T ()\T>n

P(Nr =n) = —

(7.1)

The usual equation from Black-Scholes for the evolution of a stock in the risk-

neutral measure: dAD)

with

A(t) = the price of the underlying stock at tinhe
r = therisk free rate,

o = the volatility of the logarithm of the stock price

is then extended to:

N

= (r—)\m)dt+0dz+d<Z(Jk—l)> (7.3)
k=1

where

A(t™) = the left side limit of the stock price at tine

N = aPoisson process with arrival rate



CHAPTER 7. MODELS WITH JUMP PROCESSES 76

and

{Xk} = the sequence of independent identically distributed (i.i.d.)
non-negative random variables,
m = E(J—1), the expected proportional price change for one jump.

The formula of Black-Scholes for call options with maturity
Call(AK,T,0%,r) = BS(AK,T,0%r) = S®(d) —Ke T d(dp)  (7.4)
where

In[A/K] + <r+%2) T

d = :
! oVvT
d2 - dl - O-\/Ta
o = the annualized volatility of the logarithm of the stock

price

is accordingly extended with using equatiohl) and the assumption that the
jump sizeJ is lognormally distributedJ ~ LN(a,s%)):4

) ® e—)\’T()\/T)n
Ca"(A,K,T,O- ,r,)\,a,S) - Z—IBS(A7K7T7V%7|’“) (75)
o n!
where
No= A1+m),
m = r_)\m+w7
T
s
V2n = 0-2+n?7
m = ea+52/2_1.

4 See Hulo1], p. 630f., 646.
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7.3 Glasserman, Kou (1999)

In [GK99] the authors build on Merton’s formula for deriving a formula for caplets.
Both intensity and density of the jump process are chosen as in the previous model.
Since for deriving the formula of Black-Scholes the risk-neutral measure and for
Black’s formula the terminal measure is used, in the case of interest rates the jump
process is added to the terminal measure leading to the

Forward Rate Evolution:® 1
dLi(t) N
ﬁ = —Aimdt+oj(t)dz +d<Z(Jk—1)> (7.6)
! k=1
whereN; is a Poisson process with the time-constant arrivalxate J

For simulating this process with Monte Carlo techniques one has to discretize it
for time steps of a finite siz& The jump process can be discretized by drawing a
first random number to determine — using the CDF obtained with equatian (

— the number of jumps in this time interval (%) and according to the number

of those jumps additional random numbers that are distributed as specified in the
respective jump models (= in this case lognormally).

Due to the lognormal distribution of the diffusion and the fact that the forward
rate is multiplied with the jump sizes, the step sizes for the simulation do not have
to be increased. The level of the forward rate at ttme after the jumps is then

a function of the stock price before accounting for the jumps (at fimed) ~):

N5
Lit+8) = Li((t+3) ) [ [ (7.7)
k=1

5 See [BK99], p. 13.
6 For the discretization of the drift, see Sects.
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Figure 7.1: The fit across moneynesses to the market implied caplet volatilities
with Glasserman/Kou'’s jump model for different expiries.= 17% A1 = 67%,
s1=33% my = —10%, 02 = 13% A = 27%, S = 50% mp = —15%, 05 = 9%,
As=7%, 55 =71% mg = —20%, 020 = 5%, A2 = 1%, S0 = 223%and mygy =
—62%

Similar to Merton’s formula in7.4) one can then give a
Caplet Pricing Formula:

Caplet0,Ti,5,NP K, 0i; Aj,m,s)
© T _ _
- NP6P(O,Ti+1)e"‘T‘ZO\'J.—T')BI(K,Li(J)(O),Vi(J)) (7.8)
j=0 "
with

L) = L) ™T(1+m)),

o= 02T 4 js2.
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Calibration Quality w. r. t. a Fixed Maturity

When testing the calibration quality of this model to market data one can see in
markets with a pronounced volatility smil&€{data in Figure7.l) instead of a
volatility smirk (US-$-data in Figurd3.9) a very good fit of the model implied
volatilities to market implied volatilities. Examining the calibrated parameters for
the caplet with one year expiry leads to very reasonable results: with a probability
of 49% there will be one or more jumps with an expected jump size of -10%.

While the fit to market data stays good for longer maturities the obtained parame-
ters change strongly: for a caplet with 20 years maturity with a probability of more
than 80% no jump at all will occur, but if there will be a jump event it will lead

to an average drop down of the interest rate by -62%. These parameters for the
caplet that expires in 20 years are cumbersome by itself, but combing the resulting
process with the process for a caplet with 1 year maturity would lead eventually
to a very odd forward rate curve since those jumps of different parts of the curve
are not connected at all.

Finding a forward rate process with additional parameters that can be interpreted
to have an economic meaning is certainly an advantage of the jump process, but
since these parameters are — as just shown — far away from realistic values, conse-
guentially the suggested process does not match the real market dynamics. There
are two possible improvements of this basic model. First, a different distribution

of the jump sizes should be examined and second, a time-homogeneous evolution
leading on all possible simulation paths to a smooth forward rate curve should be
found. The first will be tested in the following section, the second in the section
thereafter.

7.4 Kou (1999)

The lognormal distribution of the jump sizes proposedGiKp9| leads to a very
simple pricing formula for caplets. However, since this is the same distribution
as the underlying forward rate process it leads for longer maturities to a canceling
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out of the effects of one or more jumps. Different distributions of the jump sizes
exist with the same underlying

Forward Rate Evolution: 1

k=1

Ni
L — _Amdt+0i(t)dz +d (Z(Jk_ 1)> : (7.9)

J

In [Kou99 the author suggests a double exponential distribution for the logarithm
of the jump size with the density:

f(InNJj=x) = —e (7.10)
where

= the mean of the distribution,
2

2n< = the variance of the distribution with€@n < 1.
This can be stated differently by drawing an exponential random vaneiéh
meann and variance)? and calculating the jump sizeby:’

+v . oy l-
3 { &V with probability 3, (7.11)

&~V with probability 3.

Therefore, the distribution of [d] is symmetric in§ and can produce values for
In[J] in the rangg —, »). As in the basic model by Glasserman and Kou the log-
arithm ensured € R* and hence prohibits interest rates from jumping to negative
values.

The obtained density is similar to Studerdistributions and the main differences
to the normal distribution used iGK99] are the high peak and heavy tail features
that should have a higher impact on the distribution of the forward rate. The

7 See Kou99, p. 10.
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kurtosis is given by:

E [(X—E(X))"]
Var(X)?

Kurtosis = -3 (7.12)
with the central normalized momeht, = E [(X — E(X))?] for the double expo-
nential distribution £ DE) with & = O:

© x4 K
My — Z e n =24n*. 7.13
] / 5 an (7.13)
The difference between this distribution and the normal distribution can then eas-
ily be seen by:
. Mgy
Kurtos = ——-3=3
u IHE 4r]4 9
Kurtosisy = O.

The double exponential distribution can also be seen as a substitute for the more
intuitive but less tractable Student-t distribution with 6 degrees of freedom with
the density:

_ T(35) x2\ %2 _ 5V6 x2\ 32
e (1+€) - (”E) (7.14)

with o
r(x) = / t*~le tdt. (7.15)
0

After scaling this density Witf\/gi

-35
f(x) = £<1+X742) (7.16)

this distribution and the double exponential distribution have the same first five
moments and can hardly be distinguished at sample market data.

8 See Kou99, p. 10f.
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The high peak and heavy tail features seem appealing due to two reasons. First,
market observations show both under- and overreaction to market news, i.e. high
peaks and heavy tails. Second, as the tails in the double exponential distribution
are heavier than in the normal distribution, the effect of one jump on the volatility
smile should be stronger and in the long run the canceling out of jumps should be
slower than for the normal distribution.

The proposed dynamics lead to the

Caplet Pricing Formula:® 1

Caplet0,Ti,8, NRK, 0 Ai,&,1)) = NPSP(0,Tis1)e VT

oizTi

(SO () [ ey ()

n=1j=1 k=0

(o (1) i) et (1 e
(1-ni) (1+ni)

+Li(o)eAi<iTi+“Ei< =t ).)qa(ey*>—2K¢<6y‘>

(I=n))l 2+

+ [Li(O)e*NZiTi o(b) - an(b;)} } (7.17)

where

& = Gi\/Ti ’
L] 4 ofT

o |n[T]iT—)\|Z|T|

! oivTi ,

+ 0—i\/Ti hi

@ T ioi\/Ti7

2T,

hi = In[K/Li(0 )]+AZT.+ —ng;j,
gl

T rm

9 See Kou99, p. 21, 23.
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Figure 7.2: Comparison between the normal distribution (N), the double exponen-
tial distribution (DE) and the Student-t distribution with six degrees of freedom

(Student-t) for the variable x. All distributions have a mean of 0 and a variance
of 1. N has a kurtosis of 0, DE and Student-t a kurtosis of 3.

TheHh function is defined as follow®

Hh i(x) = eX/2,

Hho(x) = V2nd(—x),

Hhn(x) — Hhn—2(X) —anhnl(x) .

Calibration Quality w. r. t. a Fixed Maturity

The results obtained with this model (see Figut&sandB.10) are very similar to

the basic model proposed b§K99]. With this model due to the strong leptokur-

tic feature of its jump size distribution all diffusion volatilities are higher and

all jump arrival rates\; are smaller than in the previous model, but still the param-
eters are unrealistic and not apt for simulating all forward rates simultaneously.

105ee pS72, p. 299f, 691.
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Figure 7.3: The fit across moneynesses to the market implied caplet volatilities
with Kou’s jump model for different expiriesi; = 18% A1 = 65% N1 = 22%,

El = —0.2, O2 = 160/0, )\2 = 160/0, N2 = 400/0, Ez = —0.5, Og = 110/0, )\5 = 4%,

Ns = 60% &5 = —1.0, 020 = 5%, A2 = 1%, N2o = 95%and&,o = —3.5.

Different distributions of jump sizes should be found but the difficulty might be
to find an exact caplet pricing formula.

7.5 Glasserman, Merener (2001)

In the previous sections two different approaches with time-constant parameters
for the jump process have been presented. Their shortcomings are both in fitting
the smile of caplets with different maturities and in getting meaningful parameters
to produce a comprehensive model that evolves all forward rates simultaneously
over time.

A third model — clearly building onGK99] — with time-dependent parameters has
been proposed irdM014 and shall be presented and tested in this section.

The first step is again a closed form solution for caplets, the most important tool
for calibrating the smile efficiently. As in this setting the parameters of the jump
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processes are not time-constant but can even be chosen time-homogeneous, this
model and the jump sizes can be calibrated by bootstrapping. The obtained pa-
rameters can then be used to model this evolution of forward rates over time for
Monte Carlo simulations. Efficient ways for doing so are presented at the end of
this section.

Starting in the respective terminal measure from a — comparetd@p- slightly
modified

Forward Rate Evolution: h
dLi(t) NG
e —A()mt)dt+oi(t)dz +d [ > (J-1) (7.18)
! k=1
with
Ni(t) = a Poisson process with the time-dependent arrivalNte,
|
one gets a
Caplet Pricing Formula: 1

Caplet0,T;,5,NPK, Gi; A, i, §i) = NP3P(0, Tix1) (Li(0)My — K M)

(7.19)
with
1 1 [ ePWsin(By(u) — uln[K/Li(0)])
n, — E*ﬁ/o : du,  (7.20)
1 1 [ eBUsin(B4(u) —uln[K/Li(0)])
n, — §+ﬁ/o : du,  (7.21)
where

By(u) = 6ixk<0> (14 me(0))e %O 2cogwi(O)u) ~ 1|
k=1

—M(0)my(0) — o (0)u?/2

11 See BGMO1d, p. 6.
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and
Bo(u) = 62)\k (14 my(0))e~ SO/ 2 in(wy (0)u) + o (O)u+ o2(0),
Bam==62)&@&4”Wﬂw$mmw—l—ﬁmea

Ba(u) = EZAK */2sin(ay (0)u) + a(0)u

with

Wi(t) = a(t)+si(t)
ak(t) = —Ak(t)me(t) —of(t)/2,

al) = nmt)+1 -5

where all time-dependeny(t), Ak(t), mg(t) andsg(t) are chosen to be totally time-
homogeneous analogous to equati®®)leading to:

ai(0) ai(0)
ai(T oi-1(0
T = '(_ Dol _ | @ .1( ) (7.22)
0i(Ti-1) 01(0)
with respective vectors fok i, §; and ;. N

With the closed form solution fron7(19 the parameters;(0),A;(0), m(0) and
s(0) can be obtained by bootstrapping, leading to a totally time-homogeneous be-
havior of the whole forward rate process where the forward tatésandL; «(t)
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are notated in their respective (drift-free) forward measure:

Ni(t)

LU oo oda+d( Y01
! k=1
Niik(t+kd)
= Nkt KMkt + KOt + Okt + KBz +d [ S (3 1)
k=1

dLi+k(t + k6)
Lisk ((t+k3)7)

Calibration Quality w. r. t. a Fixed Maturity

Calibrating the time-homogeneous jump model of Glasserman/Merener to mar-
ket data is rather problematic since the obtained parameters are not similar, what
means — as can be seen for example at the paraspetgth the extreme volatil-

ity of jump sizes — that these parameters for longer expiries have to take extreme
values to ensure a good fit to market data as shown in Figdrén spite of these
extreme values the obtained market fit is definitely worse than for time-constant
parameters as shown in Figufel

An additional problem is that these parameters are calibrated in their respective
forward measure. Therefore, an appropriate procedure has to be found, so that all
parameters are valid in the same measure and ideally all these different Poisson
processes can be implemented simultaneously and efficiéntly.

Term Structure Evolution

The main problem with this simulation is that when changing the measure the
Poisson process changes, too. The intensity of the jump process is different in
every other measure and there exists no measure in which all processes are still
Poisson simultaneously.

12 Compare to Sectio.4.
13 5ee GMO14, p. 9.
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Figure 7.4: The fit across moneynesses to the market implied caplet volatilities
with Glasserman/Merener’s jump model for different expir@s—= 17% A1(0) =

67% s1(0) = 33% my(0) = —10% 02 = 11% A2(0) = 12% (0) = 77%
mp(0) = —24% 03 = 9%, A3(0) = 3%, s3(0) = 128% nmg(0) = —38%, 04 = 7%,
A4(0) = 3%, 34(0) = 72%and my(0) = —1%.

As this change of measure leads to the fact that the jump process is no longer
Poisson, the generated - more general - marked point process (MPP) has to be
simulated when evolving the interest rates over time.

A marked point process exhibits two stochastic components: a stochastic point
realization in time (= in this case influenced by the intensity of the jump process)
and a stochastic size effect (= in this case the density of the jump size distribution).
Further background on point processes can be foundred].

These MPPs are not that straightforward to implement, but they can be generated
by having a Poisson process that is thinned. The main concept of this thinning al-
gorithm is, first, to simulate a Poisson process with a sufficiently large arrival rate
Ao and appropriate density for the jump sizes and then to determine probabilities
for accepting these jumps of the Poisson process for the MPP.

In the special case of this model one starts with havingtes usingh marked
point processes (with the parameterf), Ai(0), m(0) ands (0) for the underly-
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ing Poisson processes in the appropriate forward measure). Due to the thinning
method it is sufficient to simulate one single Poisson process and then to thin all
n marked point processes from this. This procedure leads to a very desirable prop-
erty of the model: jumps of different forward rates occur at the same time and in
the same direction.

In the market front end forward rates have a higher tendency to jump than rates
with longer maturity. By appropriate choice of the parameters of the single jump
processes, one can achieve that thé; @atof marked point processes, the forward
rateL;(t) is sensitive to, equals:

li(t) = (i+1—B(t),i+2—B(t),...,n) (7.23)

with B(t) is the index of the forward rate closest to its reset date.

With this construction, the rate that will mature neig) (t), is sensitive to alh
MPPs, and if some ratg(t) jumps then all rates maturing earlier thRmlso jump.
Furthermore, if the term structure of volatilities is exactly time-homogeneous as
e.g. in equationZ.11) "all rates follow, under their respective forward measures
and for a fixed distance to their own maturities, the same stochastic differential
equation.1#

The appropriate choice of parameters mentioned to obtain the structure described
in equation 7.23 is made if the parameters fulfill the restriction:

si] 1,(1 1 a a4\ 1l(a& a,
] 4) (3 8) (38

> In )ﬂ +max{0,z} forze R (7.24)
A

|
where;, g ands are short foiA;(0), a;(0) ands;(0)

This restriction can be simplified to at least partially more intuitive restrictions:

1. 0 <w< 1, i.e. the realistic assumption that forward rates jump more fre-
quently the shorter the time to maturity is,

14 See 5MO14, p. 10.
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2. 0<y< 1, i.e. the realistic assumption that the closer the maturity date the
more influence an information event has on the forward rate,

3. y’§In[Y] — 3a(y>—x3) > 0,
4, max{aﬁ’2 y2In[L] + ((3;2’_"1)2 — (y2—x2)>} >0,
L -2
N w#}
—2y22—

where
Air1 = WA,
a1 = X,
S+1 = VYS.

When one simulates the evolution of forward rates over time, the possible jump
times of the underlying Poisson process can be determined even before simulat-
ing the evolution of the forward rates as they are not dependent upon the actual
realization of the rate¥

Therefore, the arrival rate of the jumps for the underlying Poisson process is cho-
sen to be:

Ao = A (24+m). (7.25)
and the density of the jump:
f1(y) +yf
fy) = 1(y2)+r3:111()’>. (7.26)

In the lognormal case of this modél has the density oEN(a,,s3) leading to
a mean of 1+ m,. The random value oy can then be computed as shown in
AppendixA.5.

15 5ee GMO1H, p. 7.



CHAPTER 7. MODELS WITH JUMP PROCESSES 91

Then, the probability of a jump of the forward rate closest to maturity is given by:

1+ydlgu(t) Arfu(y) 1+V5Ls<t>(>

= = 7.27
PO = T4 8000 Mofly)  (I-dlgg(t) Aty 20

and for the forward ratelsg ;) j; 1, conditional orLg) j jumping, by:

1+ydLgt)rjr1Aj+2fjsa(y)
0 o ) (7.28)
B(t)+j+1 1+ SLB(t)+i+1 )\j+1fj+1(y>

. — <X — .
The result of the bootstrapping were the vectars A, m; and Sj. In this
restricted model these values can also be used with an approximationiyhere
t>Ts—T, fora

Swaption Pricing Formula: 1
. — - —
Swaptiorf0, T, Ts, NP K, O'rs; A v, mr,& S'ts)

s—1
= NP3 P(0,Ti11) (S50 —KIMy). (7.29)

i=r

H
For this approximation, using the previous results, the vecﬁ)@ Ars Wins and
St s have to be computed.

Similar to equationZ.24) the volatility of the diffusion process can be determined
by:16

—1

m
|_\
(/)

Wi (0)w; (0)Li(O)Lj(O)ai(t)oj(t)pi,;i(t)
2.0 . (7.30)

i=r j=r

As the swap rate jumps with every forward rate resetting withi =r,....,.s—1
and in this restricted model the forward ratét) can only jump wher;_1(t) is
also jumping the arrival rate for jumps of the swap rate is given by:

Ars(t) = Ar(b). (7.31)

16 See 5MO1d, p. 25-27.
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The jump size and the volatility can be approximated by:

mes(t) =

YAt ) (O)Li(o)”;)(t)7 (7.32)

)\f(t) J r (O)LJ(
| [ Iy (03 (e%<t><1+mt>>2—zm<t>—1)
n
(14 mes(t)2 355 55w j (0)

1+2meg(t)
(1+mes(t))?

§,s(t) =

(7.33)

where

wj(0) = (0)wj(0)Li(O)L;(0),
w = maxi,j}.

Calibration Quality w. r. t. the Full Term Structure Evolution

Glasserman/Merener’s restricted jump model enables the time-homogeneous evo-
lution with parameters that ensure a rather smooth development of the forward
rate curve. Calibration of this model shows already for the caplet with expiry in
two years an insufficient fit to the market implied volatility smile.

It can be seen at Figuig5and the parametess, s, andsz that are decreasing as
slow as possible that the restrictigni < s is the main obstacle for a better fit to
market data. Therefore, the thinning process ensures a meaningful joint evolution
of forward rates but restricts degrees to freedom too much to enable a good fit to
real market data.
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Figure 7.5: The fit across moneynesses to the market implied caplet volatil-
ities with Glasserman/Merener’s restricted jump model for different expiries.
01=17% A1(0) =67% 51(0) = 33% M (0) = —10% 02 = 14% A»(0) = 27%,

$(0) = 31% mp(0) = —19% 03 = 12% A3(0) = 6%, s3(0) = 30% m(0) =
—19% 04 = 12%, A4(0) = 4%, 54(0) = 20%and my(0) = —17%

7.6 Comparison of the Different Models with Jump
Processes

The basic model of Glasserman/Kou building on Merton’s fundament with time-
constant parameters for the density and the intensity of the jump process has been
presented first in this chapter. This model is able to fit the volatility smile of
forward rates close to maturity very good with reasonable parameters. For caplets
with longer maturities the fit is still good but parameters are getting more and
more cumbersome and unrealistic. This can only be slightly improved by a more
leptokurtic distribution of the jump sizes in Kou’s model.

Another problem of these two models are the time-constant parameters. They
lead to very different jump processes for each forward rate when it is close to
maturity. Besides that, the simultaneous simulation of the forward rates following
such different jump processes would lead to a very uneven forward rate curve. A
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model with time-dependent parameters for the jump process therefore has been
introduced at length in the previous section. However, when using this model for
calibrating one does not get a really good fit, but unrealistic parameters. When
restricting these parameters to enable a simultaneous simulation of forward rates
that leads to a realistic (i.e. smooth) forward rate curve, parameters are reasonable
(by definition) but the fit already for caplets very close to expiry is insufficient.
Therefore, jump models standing on their own fail to provide reasonable dynamics
for the evolution of forward rates but might be interesting in combination with
other previously discussed basic models.
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Combined Models and Outlook
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Chapter 8

Comparison of the Different Basic
Models

In Part Il of this thesis the four classes of basic extensions of the LIBOR market
model have been introduced and several models been tested. All aspects men-
tioned in SectiorB.3 have been discussed for each model separately with the ex-
ception of self-similar volatility smiles since one can examine this requirement
best in a direct comparison of different models. After this little "case study” a
tabular overview of all models and their characteristic will be given leading even-
tually to a suggestion which models should be combined to approach the goal of
a comprehensive smile model.

8.1 Self-Similar Volatility Smiles

The requirement of a smile model implying self-similar volatility smiles, i.e. for-
ward volatility smiles that are similar to the actual volatility smile, is very often
neglected when modeling the evolution of the forward rates since fitting caplet
and swaption market data is a more obvious and compelling goal. Additionally,
the future implied volatility smiles have influence on the prices of exotic options
but these options are usually not liquid enough to extract these dynamics.

96
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To clarify the effects of different model implied future volatility smiles a simpli-
fied pricing example is given. Since in all basic classes there are models that can
generate symmetric volatility smiles the exemplary "market data” is:

LZ(O) = 2%5
5(0) = 20%
6(+£2) — 25%

with 6(M) being the annualized Black implied volatility for a caplet with money-
nessM. This set of data has been chosen to enable all models to match the given
volatilities exactly.

The following four models — one for each class of basic models — are compared:

1. Mixture of Lognormals (Section 4.5),
2. Uncertain Volatility (Chapter 5),
3. Stochastic Volatility without Correlation (Section 6.2),

4. Lognormally Distributed Jumps (Section7.3).
The calibrated model parameters are given as:

e For the local volatility and the uncertain volatility model (since both
share exactly the same pricing formula):
0 =415% (i.e.01 = 8.3%,02, = 20% andoz = 31.8%).

e For the stochastic volatility model:
K = 10% (chosen manually§,= 122% ando = 22%.

e For the jump model:
A = 20% (chosen manually$= 38%,a = —% = —7.1% ando = 14%.

These parameters lead to the volatility smiles shown in Fi§uke
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Figure 8.1: Market data and implied volatility smiles for four different basic
models for a caplet expiring in two years.

Determining the model implied future volatility smile not only means to fix param-
eters but also in some cases to account for different underlying dynamics. More
explicit, the ways to compute the future model implied volatility smile in each
model are given as follows:

e For the local volatility model:
The future volatility is still determined by4(20. Therefore, one has to
perform a simulation for timé =1 tot = 2 for this given dynamics with
L2(0) = 2%.

e For the uncertain volatility model:
Since the time for the draw of the random variable is already over at time
t = 1, the chosen scenario and the connected voladlityis already fixed
with the probabilityp j. In this case, the three scenarios occur with a prob-
ability of £ each.

e For the stochastic volatility model:
To determineV (1) one has to roll out the variance level. From the dis-
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Implied Volatility

Figure 8.2: Future volatility smiles implied by the local volatility model for differ-
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ent levels of the forward rateol(1).

tribution of V(1) different possible future implied volatility smiles can be
computed with 6.5 and ©6.9).

e For the model with a jump process:
Since the jump process is memoryless the future implied volatilit{d4)

are deterministic and the caplets can be priced for the expiry in 1 year with
(7.8) with the same parameters as computed for expiry in 2 years previously.

To compare these future implied volatilities the volatility smiles are given in
Figures8.2 to 8.5, For comparability reasons the moneyness is computed with

o = 20% independent of the model implied volatilidy0).

The only model where the future volatility smile depends upon the level of the for-
ward rate is the local volatility model. Different smiles from different levels of the

forward ratel>(1) are given in Figuré.2 There it can be seen that the volatility
smile is so-called "sticky strike”, i.e. the minimum local volatiliyt; L;(t)) stays
at the same strike independent of the level of the forward rate in future.
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Figure 8.3: Set of future volatility smiles implied by the uncertain volatility model.

The other model with exactly the same pricing formula, the uncertain volatility
model, leads to flat volatility smiles. One of the possible volatility scenarios is
chosen directly after time 0. In this case each of the scenarios shown in BiGure
occurs with a probability of 33%.

The stochastic volatility model leads to a far range of possible future volatility
scenarios. In Figur®.4 possible future volatility smiles are given. Since the
process§.2) is a martingale, the meanVg1) = 1. The other volatility smiles are
the 25%, the 50% (= median) and the 75% quantil¥ df).

Finally, Figure8.5depicts the future smile implied by the jump model. This smile
is independent of both the level of the forward rate and the number of jumps
having occurred in the past.

In summary, the future smile implied by the local and the uncertain volatility
model are not self-similar at all. Opposed to that the stochastic volatility model
and the jump processes lead to volatility smiles that can be observed in the mar-
kets.
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Figure 8.4: Representatives of the future implied volatility smile by the stochastic
volatility model.

These findings certainly have a strong influence on the prices of exotic derivatives
and further research should be done in this area. For example calculations how
much exotic option prices depend upon the chosen model for the evolution of the
interest rate and/or the volatility, seJNO(, p. 851-855.

8.2 Conclusions from the Different Basic Models

After having discussed all possible aspects of these basic models from Section
4.1 to Section 8.1 in length a tabular overview of their characteristics is given in
Table 8.1. While most of the fields in this table are obvious some classifications
might also be chosen different, i.e. choosing "true” instead of "partially true” and
vice versa. Furthermore, due to space restrictions not all fields for every single
model have been reasoned throughout this thesis but in most cases should be ap-
parent.

The "uncombined” model seeming best to fit market data and implying reasonable
dynamics is Wu/Zhang’s stochastic volatility model with correlation. However,
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Figure 8.5: Future volatility smile implied by the jump model.

the tractability and also the fit for example to the US-$ data shown in Figu@e
are not totally convincing.

The combination of some models might provide further possibilities. Since both
stochastic volatility and jumps are observed in the market, this might be a very
promising approach and will be presented in Chapter 9.1 additionally including
CEV.

While this model including jumps, stochastic volatility and CEV seems like the
ideal model for fitting the market implied volatility smiles a better tractable com-
prehensive smile model might be the combination of stochastic volatility and
displaced diffusion. This DD approach can also be seen as a better tractable
way of generating correlation between the forward rates and the volatility than
Wu/Zhang's model. This model will be presented in Chapter 9.2.
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Chapter 9

Combined Models

At the end of the previous chapter two combined models have been suggested for
being tested how they fit market data. Both imply reasonable joint forward rate
dynamics that are important for exotic option pricing. For a good fit both models
have to include stochastic volatility as this is the only way to generate a volatility
smile for long-term options with realistic dynamics.

In the first model this stochastic volatility will be combined with jump processes
and constant elasticity of variance. Since jumps are observed in the market and
the CEV approach prohibits interest rates from becoming negative this might be a
big step towards the ideal model for the forward rate dynamics.

The second model, the combination of stochastic volatility with the displaced dif-
fusion approach, will be more tractable, e.g. efficient ways for calibrating the
whole swaption matrix can be presented for the latter model.

Both models will be tested the same way as the basic models according to the
scheme presented at the end of Sec8dn

104
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9.1 Stochastic Volatility with Jump Processes and
CEV

Jarrow, Liand Zhao present in their paper this combined model with the following

Forward Rate Evolution: ! .
dL;(t \
ﬁ(; — amdt+ (L)) o) N Ddz +d (Z(Jk— 1)) 9.1)
| k=1

whereL;(t™) is the left side limit of the forward rate at tinteand the other pa-
rameters are as given in the basic models discussed in Sedtibasd7.3. The
evolution of the variance is given by:

dV(t) = k(V(0) =V (t))dt + eV (t)dw (9.2)

with the parameters as described in Sec@idh J
These dynamics lead to the

Caplet Pricing Formula: 1

Caplet0, Ti, NP K, 0i; Vi, K, €, Aj, My, S}

_ NP6P(0,Ti+1)Ze)‘iTiO\ij—PjG(O,Li(D,V(O),D (9.3)
j—0 '
wherée
LY = Li(0)e dmT(14+m), (9.4)
(oL v(0),i) = Lo(d) - Ka(cy) (9.5)

1 See JLZ07, p. of.
2See ILZ02, p. 19.
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with

d1: - : ’

d = di—l) (o, L-(j),c> ,
(

Q) (O,Li(j),c> - \/Q <O,Lij),c>+jsi2.

For calculatingQ an expansion can be computed:

a(onle) = ao(L)emirer (L) enivo(m?).
(1) - M
f' uvidu

(i)
0 (1) = - % (L") 51

L)
(fK' u—v du)

The variance can be approximated by:

-
C = C+00e%+01€%In [Li(”/K] +0 (e

wheré
tT = \ﬂ/ﬂoiz(u)du,
Ti Jo
ap = &%(QH—EQ(O,LfD,C)ZQm),
ap = (lTl._)ZZ <O,Li(j),(:>2§210.

3 See PpBRO1], p. 31f.

Qo (Lf”) <Li(j)K)1_w] .

106

(9.7)
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with

an -

Q0 =

(
<.

and

Ti
p(t) = / o?(u)e Uy,
t

-

The problem of this closed form solution are the two approximation8.6) &nd
(9.7). The first expansion for computirfggmakes the formula inaccurate for big
The second expansion for computiadeads to convergence problems #or 1,
i.e. for values that are usually obtained when calibrating to marketdata.

One can improve the second expansion by increasing the order of the approxima-
tion with substituting in9.7):

O(e*) = ¢ (Bo+[31In [Li(j)/KrJrlen [Li(j)/Kr) +O<a6>. (9.8)

The values fop, 31 and3; are given in AppendiA.6.

- 4
For options deep in or out of the money Wher%uﬁ)/K] tends to grow teo the

4 See pBRO1], p. 12.
5 See pBRO1], p. 35f.
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Figure 9.1: Comparison between the exact solution fr(@r8) and the basic ex-
pansion from(9.7) (= O2) and the higher order expansion frof®.8) (= O4) for
different values of\. To be able to get a better comparison of these expansions the
CEV and the jump processes are switched®ft= 20% € = 120%andk = 10%

results are deteriorated. To avoid tBisis substituted by
= —A€2In [L.“)/K] ’
B2 = Bee ' (9.9)

whereA\ is some arbitrary small number (usually chosen between 1 and 10).

The implied volatility smiles for different expansions are shown in Figtude

The problem is that different maturities and different sets of moneynesses would
imply different A\ that best approximate the exact solution. This exact solution
from Section6.2 can not be used for pricing since the expansions are needed to
incorporate jump processes and CEV for the closed form solution. Since usually
a very low reversion speeadfits market data best, these expansions could most
probably not even be improved easily to a reasonable level since for srtredl
approximate pricing formulae are most inaccufate.

6 See PBRO1], p. 17.
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Figure 9.2: The fit across moneynesses to the market implied caplet volatilities
with Jarrow/Li/Zhao’s combined model for different expiriess 110% k = 15%
01=19% A1 =57% my = —12% 51 = 32% y1 = 98%, 02 = 1.0%, A2 = 32%
mp=—11% s =42% Yy, = 18% 05 =2.9%, A5 =10% m = —17% s = 41%

Y5 = 51% 029 = 0.3%, )\20 =0.9%, mpg= —53% 0= 171% Y20 = 0.3%

An exact closed form solution without convergence problems could be very useful
in testing — similar to the work ingCC97 — which of the basic models included
is most important in providing a good fit to the market implied volatility smile.

Calibration Quality w. r. t. a Fixed Maturity

This comparison was performed i3L{Z0Z. The parameters obtained in their pa-
per rather show how easily a model with such a myriad of free parameters can
be overfitted. Especially at meaningful parameters like the reversion level of the
stochastic volatility process that logically should be at least at the same magni-
tude as the actual volatility this overfitting is obvious. For instance, calibrating
a reversion level of & for caplets with 7 years maturity and0Q4 for caplets

with 5 years maturity as was done idL[Z0Z can be regarded as an extremely
problematic example.
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For this reason when calibrating to market data as shown in F&y@tee param-
eters for the stochastic volatility were set equal for all maturities. The reversion
level has been set — as always throughout this thesis — to the actual level of volatil-
ity. Extremely little loss of accuracy is obtained when doing so, but both analytic
tractability and parameter stability are improved. The results show how easily
most volatility smiles can be fitted with this model. Parameters for the jump pro-
cesses and the CEV, however, are not consistent for different expiries.

The main problem of this model remains the analytic tractability and the lack of
methods to evolve the term structure of interest rates simultaneously.

9.2 Stochastic Volatility with DD

After the non-exact caplet pricing formula in the previous model a combination
of stochastic volatility with displaced diffusion only needs slight modifications of
the closed form solution fron6(3).

This model was presented iIAAO2] with the following

Swap Rate Evolution: 1
dSs(t) = [BrsSs(t) + (1-Brs)Ss(0)] orsy/V(t)dzs  (9.10)

and the evolution of the variance
dV(t) = K(V(0)—V(t))dt+&/V(t)dw (9.11)

where the parameters are as given in Sedi@n J
These dynamics lead to the

Swaption Pricing Formula: 1

Swaptlomoa Tr 9 TS7 N P7 Ka O-I’,S; BI’,S7 Ka 8)

s—1
f 0),T;,K,Ors; Brs, K,
= NPd P(0,Ti11) (SF,S( ), raﬁyor,s Brs K £)
s

i=r

(9.12)
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where

f(Ss(0),Tr,K,Or s Brs, K, €)

- BI(K’,Sr7S(O),v)—S(;(TO) . C;?ﬁé (H(O,w)—e‘(‘*’z+711)vz/2> dw (9.13)
—® 4

with

K' = BrsK+(1-Brs)Ss(0),
V2 o= B%SGESV(O)Tr.

To computeH (0, w) with (6.5) one has to substitute equatidhq) with

dB 1 1 1
5 =5 24025 (“’2+21> +KB—§€282 (9.14)
and the following calculations are as described in Sedi@n 4

Calibration Quality w. r. t. a Fixed Maturity

When calibrating this model to market data again for the process of the variance
the same parameters for all different expiries are used€Fadata this generates

an acceptable fit (Figur@.3), for US-$-data (Figurd3.11) the same problem as

for other models occurs: the skew is too strong to be fit by the model. Since the
results are similar to the results of a stochastic volatility with correlation model
(Section6.4) the displaced diffusion can be regarded as a (mathematically) "cheap”
way of modeling the correlation between volatility and the level of forward rates.

With the parametens ande calibrated to the caplet volatility surface one can also
fit swaptions with different tenors sufficiently in both markets (Fig@esand
B.12).
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Figure 9.3: The fit across moneynesses to the market implied caplet volatilities
with the stochastic volatility and displaced diffusion model for different expiries.
012 = 32% P12 = 35% 023 = 28% Bo3 = 26% 056 = 20% PBse = 27%
020,21 = 14% [320721 = 3%, € = 121%andK = 4%.

Term Structure Evolution

Volatility smiles could be fitted sufficiently well with this underlying model. The
missing part, however, is the connection between the time-constant parameters
Brs and oy s and a process for the forward rates so that these can be simulated.
This has to be done since no gengando can be found that enables a sufficient

fit to all market datd. A way of generating these dependencies efficiently was
presented inRit034.

Starting from the dynamics of the forward rate with time-dependent parameters
under the terminal measure:

dLi(t) = [Bi(t)Li(t) + (1 —Bi(t))Li(0)] ai(t)/V(t)dz (9.15)

’ See Pit034, p. 71.
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Implied Volatility
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Figure 9.4: The fit across moneynesses to the market implied swaption volatilities
with the stochastic volatility and displaced diffusion model for expiry in one year
and different tenorsoy » = 32% (1, = 35% 013 = 28% P13 =21% 016 =

22%, Bl,G = 4%, O121= 15% [31721 = 8%, € = 121%andK = 4%.

with the usual

m
ai(t)dz = > oy (t)dzy
P

one can approximate the dynamics of a swap rate in the drift free measure by

dSr,s(t) = [Br,s(t)sr,s(t) + (1 - Br,s(t)sr,s(o)] V V(t) Z 0ns,k(t)dz(k) (9-16)
k=1

where

s—1

Orsk(t) = ZQns,iUik(t), (9.17)
s—1

Brs(t) = > PrsiBit (9.18)
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with

Li(0) 0Ss(0)

Qr,s,i = S@s(O) aLi(O) 5

0S5(0) B |

oLi(0) @;(0) from equation 2.22),
Prsi > k-1 Oik (1) Orsk(t)

(S_ I’) Erknzlor%s,k(t)
wheremis the number of factors.

With this result, the approximate volatility and skew for every swaption can be
calculated from the volatilities and skews of the forward rates. These values, how-
ever, are time-dependent as opposed to the time-constant values from calibrating
market data with formula9(12.

The time-constant skew can be calculated%ia:

Tr
Brs = ; Brs(t)wi s(t)dt (9.19)
with
V2. (1)o24(t

wolt) = 00O

0 Vr,s(t)ons(t)dt

t t kU _ gKu
Vist) = V(0 / oZy(u)du-+V (0)?e ™ / Ors(U) 5, —du.
: 5 On O

The time-constant volatility can be calculated as the solution to:

9"(@) » ) < 9”(0)
—=20 = — 9.20
¢O ( g/(z) rs ¢ g/(z) ( )
8 This equation corrects an error in the original articRit(34, p. 8, 24).
9 See Pit034, p. 11-14.
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where
T
{ = V(0) | ofqb)dt,
0
_ Ss(0) Br sv/X
gx) = Be (2q>< > )-1). (9.21)

= (In[g()])’

(3

- 2 /
S,S(O):| —}ln x| — Br_sx>

= \"Mava) 2"
2
_ _Zix_%s. (9.22)
The function
h(x) = A0X)-V(0)B(0x) (9.23)

with A(t,Xx) andB(t, x) satisfying the differential equations

dA

a - —KV(O)B7
B 1,
rri —ZeB —KB+xo(t)

and the final conditions
A(Tr7X> = O7 B(Tr,x) = O

can be solved explicitly when using equatioAs21) and @A.22) in AppendixA.3
iterativelyl?

10 see pPit03Y, p. 31f.
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The function$o(x) can be solved as:

do(x) = eAOX-V(OBOX)
2X(1— —YTr
B(O,x) = X ( e ) .
(K+y) (1-eVTr)+2ye VT
2KV (0) 2y )
11 -
A(O; X) o g2 In (K +y) (1_ e—yTr) 4 2ve_y-|-r 2KV(O) < +yTr,

vV = VK242

Calibration Quality w. r. t. the Full Term Structure Evolution

Using the just derived dependencies between the forward rate paraméteand

Bi(t) and the time-constant swap rate parametessindf3; s one does not have to
calibrate the forward rate parameters directly to market implied volatilities but can
divide this calibration into two steps. These dependencies are also summarized
graphically in Figured.5.

First, the parameters of the stochastic volatility proeessdk and for each expiry-
tenor pair the parametecg s and(3; s are calibrated to fit market implied volatili-
ties best.

This step can be divided into two substeps:

1. Calibration of € and k:
As there is exactly one variance process generating the volatility smile for
all different expiries and tenors the parameters have to be the same for pric-
ing all swaptions and caplets. To determine these two parameters the im-
plied volatility smile is calibrated for different expiries and tenors simulta-
neously and the andk leading to the minimum combined error are chosen.

2. Calibration of ;s and o;s:
Using the two parameters for the stochastic volatility process the matrixes
Brs anda, s can be calibrated.

11 This equation corrects an error in the original articRit)34, p. 32).



CHAPTER9. COMBINED MODELS 117

Time-dependent roll out
Market data _(Calibrationy | (forward rate) (9.15)
n3 parameters €====5:====:=pp 2n%+2 parameters
Gr,s(M) Bi(t) Gi(t)
€ K
A

Time-dependent roll out

(Calibration) (swap rate) (9.16)

|

i

|

i (9.17) & (9.18)
| A
|

|

|

|

(Step 1) [¢————-"—--- 2n3+2 parameters
(9.12) Brs(t) ors(0)
€ K

(9.19) - (9.23)

|
|
|
|
|
|
|
|
|
Time-constant roll out I Time-constant roll out
|
|
A 4

A 4
(swap rate) (9.10) (swap rate) (9.10)
2n2+2 parameters P 2n2+2 parameters
Brs Ors (Calibration) B e G rs
€ K (Step 2) € K

Figure 9.5: The dependencies between the parameters of the forward rate and
variance processes and swaption implied volatilities for the stochastic volatility
and displaced diffusion model.

Second, the forward rate parameteré&) andf3i(t) are calibrated to fit the just
obtained swap rate skews and volatilities as good as possible.
The second step can be further divided into 3 to 4 substeps:

1. Calibration of oj(t):

The matrix of parameters; s is used to bootstrap the time-dependent for-
ward rate volatilitiew;(t).

12 The aim of exact time-homogeneous parameters can usually not be reached while maintaining
an acceptable fit to market implied volatilities. Since this problem is always persistent when
calibrating to market data even in the pure LIBOR market model, it should not be regarded as
a problem caused by this specific model.
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2. Improving time-homogeneity of oj(t):
Theseai(t) are calibrated with penalty functions for being more time-
homogeneous while only slightly deteriorating the previously exact fit to
the matrixoy s.

3. Calibration of Bj(t):
The matrix of parameter; s is used to bootstrap the time-dependent for-
ward rate skew§;i(t). The obtained parameters are afterwards simultane-
ously calibrated to the matrix ¢ s improving the calibration.

4. Improving time-homogeneity of 3;(t):
Thesefi(t) could be optionally calibrated with penalty functions for be-
ing more time-homogeneous. However, an approximate time-homogeneity
would lead to a heavy deterioration of the previously exact fit to the matrix
Br.s and hence is usually not carried out.

Substeps 3 to 4 can be executed after substeps 1 and 2 since these two optimization
problems are almost orthogoridl.

For better understanding this calibration procedure an example with real market
data will be given. The parameters obtained are given in Tablédo C.5 in
Appendix C. Figures9.6 and 9.7 show the obtained results on pat20. The
calibration will be carried out fo€ market data for the swaption matrix with

s< 11, i.e. for a triangle matrix with expiries up to ten years and tenors up to ten
years.

The calibration to market data leads in the first steptto:
€=134% K=12%

and differentB; s and o, s for each expiry-tenor pair. The results are given in
TableC.1.

13 See Pit03M, p. 15f.

14 This result is different from the result obtained when calibrating data for Figisince a
different set of options has been chosen to calibrate to and a wide range of differgtirs
leads to very similar effects on the volatility smiles.
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In the second step, simple bootstrapping of time-dependent but not time-
homogeneous parametersgt) as substep 1 leads to the values given in T&bk
Further calibrating these;(t) with a function that additionally penalizes for non
time-homogeneous values leads in substep 2 to the values given inCI&ble

In substep 3 finally, the skew parametfy&) are bootstrapped and afterwards op-
timized leading to the values in Tallz4. The values 100% and50% have been

set as boundaries for afy(t) since values outside this interval are considered un-
realistic and especially for highly negatigt) also mathematically cumbersome.
Both values are marked red in this table to show the problem of this bootstrapping
and how far away from time-homogeneous parameters the bootstrapped param-
eters are. It has to be noted that imposing these boundaries leads — like in the
unavoidable case of the volatilitgj(t) > 0) — to the fact that the bootstrapping
cannot always exactly rebuild the matfxs.

The differences between tiogs and; s from step 1 anay s andf3; s from step 2
are given in Table.5.

For the two swaptions with the highest difference in the sk8y¢) and in the
volatility grid (Sy,11) the calibrations are compared in Figue6and9.7. There
one can see clearly that136 difference in3; s leads to much smaller calibration
differences than a.@% difference iro, s. In both cases considering that these are
the worst examples for the complete swaption matrix the fit seems sufficient.

Therefore, this model is able to fit the whole volatility surface of the swaption
matrix, has approximately time-homogeneous volatilities and can be calibrated
efficiently. The remaining problem are the skew parameters of the forward rates
Bi(t) since these parameters are not remotely time-homogeneous and both borders
for possible values{50% and 100%) are frequently touched in TaBld. How-

ever, due to the strong effect of the stochastic volatility, future volatility smiles
are more self-similar than for other models that provide a good fit to the volatility
surface.



CHAPTER9. COMBINED MODELS 120

30%
— market
—©—0,p
- —&— o™, B*
= 25%
(4]
=
> L
©
QL
E. 20% +
15% 1 1 1 1 1 1 1 |
-2 -15 -1 05 0 05 1 15 2

Moneyness

Figure 9.6: Comparison between market and model implied volatilities in the
SV & DD model for a caplet with expiry in 5 years and 3 are the best pa-
rameters obtained in step &* and 3* are the parameters obtained in steps 2
where the volatility was calibrated to be more time-homogeneous and the skew

was bootstrapped.
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Figure 9.7: Comparison between market and model implied volatilities in the
SV & DD model for a swaption with expiry in one year and a tenor of 10 years.



Chapter 10
Summary

The LIBOR market model is one of the most important interest rate models re-
cently. The most demanding problem for using it successfully as a benchmark
model is the volatility smile.

The LIBOR market model is usually simulated with Monte Carlo techniques, the
most flexible implementation. Therefore, the forward process lends itself to a
myriad of different extensions. The four most important extensions, in this thesis
called "basic models”, have been presented in Part Il. While there are many ways
of fitting a market given volatility smile the class of stochastic volatility models
seems most important as these are the only models that can generate volatility
smiles for long-term options implying reasonable future forward rate dynamics.

These dynamics — as has been discussed in Chapter 8 — are cumbersome for local
and uncertain volatility models. Due to their analytic tractability and easy im-
plementation these models are, however, the most popular for pricing derivatives
including a volatility smile.

In Chapter 9 two combined models have been introduced. The first one, the com-
bination of stochastic volatility with both jump processes and constant elasticity
of variance, causes problems with the pricing formula and the time-homogeneous
behavior of the forward rates. The second model does not share these drawbacks.
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Since it combines stochastic volatility with displaced diffusion it has the shortcom-
ing of possible negative interest rates.

As this second model — due to the extensions presentditBBld — can connect
swaption implied volatilities to the forward rate parameters, it offers the possibility
of exact time-homogeneous joint forward rate dynamics. When calibrating to
market data, however, this exact time-homogeneity could only be reached for the
cost of insufficient calibration results.

Future interesting developments for smile modeling in the LIBOR market model
might be especially closed form solutions, e.g. for stochastic volatility combined
with jump processes, for jump models with a more leptokurtic distribution for the

jump size, and for more realistic distributions of the stochastic volatility process,
since the lack of exact solutions makes many interesting ways of evolving the
forward rates over time untractable or inefficient.
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Appendix A

Mathematical Methods

A.1 Determining the Implied Distribution from
Market Prices

To determine the implied distributiofy, (T) of the forward rate.(T;) at its reset
date one starts with the option pri€¢K) as a function of the strike K expressed
as the expected payoff of the option in the terminal meas(® (1, T 1) = 1):

00

C(K) = P(t,Ti+1)/ max{s—K, 0} f, (1, (s)ds. (A.1)

The first derivative is then:

a%—ff) = P(taTH—l)/_m_lsszLi(Ti)(s)ds (A-2)
= P(t,TH_l)/K _fLi(Ti)(S)ds' (A.3)

The second derivative equals:
0%C(K)

0K?
1 See BL78], p. 627 and Fri04], p. 56f.

= P(t, Tiva) fL (1) (K). (A.4)
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As this derivative can be approximated with differences of market pfices:

0°C(K) _ C(K+AK)+C(K —AK) — 2C(K)

oKz AK?2 (A-5)
one can calculate the implied distribution as:
1 C(K+AK)+C(K—-AK)—-2C(K)
flLm(K) = . A.
|-|(T|)( ) P(t,Tii1) AK2 (A.6)

For better comparison of different distributions and calculating the skew and kur-

5o

AT of the forward rate can be used. Since

tosis, the moneynedd =

/m L (9ds = Prob(Li(T) <K)
K

= Prob(M(Ti)<M):/ fmem) (y)dy

M
with -
Li(Ti
M(Ti) = @ (A7)
oivVTi
one can re-phrasé(4) as
0°C(K) fmcm) (M)
KZ P(Uﬁl)m- (A.8)

The implied distribution of the logarithm of the forward rate can then be calculated
via:

Koiv/Ti C(K+AK)+C(K—AK)—2C(K)

M) = BT, AK? (A9)

Since these procedures are independent of the actual model the implied distribu-
tions of market and model prices can be easily compared.

2 See Bey0qQ, p. 82.
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A.2 Numerical Integration with Adaptive Step Size

When numerically integrating a fixed step size is usually not efficient as there are
sections like singularities where small step sizes are important and other sections
(especially when integrating a converging functiomejavhere extremely big step
sizes are sufficient. The main idea of adaptive step sizes then is to integrate

b
I:/ f(x)dx (A.10)

with two different algorithms to obtain two approximatiolga, b) andl,(a,b).2

If the difference between these values is smaller then a chosen tolerance level
(minimum tolerance is the machine precision), the better (i.e. the one with the
higher expected accuracy) approximation is chosen as the value of the integral.
Otherwise, one divides the integral in two parts

| = /mf(x)dx+/bf(x)dx (A.11)

m

with m

%(a-l— b) and then performs their integration independently.

For computing the approximative integrals iG99 the authors suggest the
Simpson quadrature with

o(ab) — (b—a)f(a)+4fém)+f(b), (A12)
l1(a,b) = lp(a,m)+Ilo(m,b)
_ (b_a)f(a)+4f (%“)+2f1(2n)+4f (m+7b)+f(b).(A.l3)

For improving the residual errors one step of Romberg extrapolation istused:

_ 16I1(a, b) — |o(a, b)

IZ(av b) 15

. (A.14)

3 See [5G99, p. 3-5.
4 See Ern03, p. 376.
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For a termination criterion one can choose:
ls = Is+(I2(a,b) —11(a, b)) (A.15)

wherels is a first (computational) guess (e.g. with Monte Carlo) for the value
of the integralla,b] and= denotes computational equivalence, i.e. with machine
precision. When dividing the integral iteratively into more and more parts the
samels is used even for all these subintervals as increasing the absolute accuracy
for partial integrals with less weight is unnecessary and inefficient.

For every intervala, b] the integral is computed with 5 function calls in the first
step. With handing over the obtained results to the computation of the partial
integrals ¢ (a), f (35) and f(m) respectivef (m), f (™2) and f (b)) only two
additional function calls per each partial integral have to be computed leading to
an efficient algorithm.

For well behaving and converging functions such@&$§)( (6.17), (6.18, (7.20),
and (7.21) the main problem of numerical integration, the correctness of the ob-
tained results, is usually not given.

A.3 Deriving a Closed-Form Solution to Riccati
Equations with Piece-Wise Constant Coeffi-
cients

Given the general problem where coefficients are constant

dA
i aoB, (A.16)
B
?j—r = byB?+biB+by (A.17)

with the initial conditions
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one starts with solving foB as it is independent gk. The equation
boY?+b1Y +bg = 0 (A.18)
has two solutions

.= with  d = y/b2— 4bgb,. (A.19)

ChoosingY, we consider the difference betwe¥énandB

Y. = B-Y,.

Obviously,Y; satisfies

dy; d(Y]_ —l—Y+)

ot dt
= bo(Y1+Y:)2+br(Y1+Y,) +bo
(A.19)
2.7 N
= b2Yl + (2b2Y+ + b]_)Yl
= b2Y12—|—dY1
with the initial condition
Y1(0) = Bp—VY;.

This Bernoulli equation can be solved explicitly

_d_ gt
bz (1—ge™)

5 See Wz02], p. 29f.

—b1 +d —2Bghy

" " by —d—2Bgh2

where ¢

(A.20)
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leading to the solution foB

B(1) = Y;:4+V1
—by+d n E gedT

2bo by (l— gedT)
(—b1+d —2byByp) (l— edT)

=B A21
ot 2b (1 ge) (A.21)
and through integrating this result also to the solution of A
T
A(T) = Ao+ao/ B(s)ds
0
_ ag(—by +d — 2b,Bp) /T 1_ gt
= Ag+apBoT + 265 A 1_gede.[
_ ag(—b1 +d — 2b,Bp) _/T(l—g)edT
= Ao+apBot+ 2bs T 1 get dt
_ Ao+ao(—b1+d)T_ao<—b1+d—2b280)/e‘“ -9,
2b 2byd . 1-gu
_ pgy Db d)T ao(-bytd—20,B0)g-1 1- ge
2by 2bod g 1—g
- Qo ([ o [1—ge™
= fot o (( by +d)t 2In[ g ) (A.22)

A.4 Deriving the Partial Differential Equation for
Heston’s Stochastic Volatility Model

Similar to the Black-Scholes framework the partial differential equation in Hes-
ton’s stochastic volatility model can be derived by a replication strétegie
price of the derivativeC is replicated by a portfolieX of the underlying stocl4,

the money market account (with the risk-free interestirpséand another derivative

6 See Wys0(, p. 4f.
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W. The initial valueXy of the portfolio evolves according to:
dX = adA+bdW +r(X —aA—bW)dt (A.23)

with a is the number of stocks arulis the number of the derivativé¥' in the
portfolio.” From the exact equality for all times

X(t) = C(AV,t) (A.24)

follows the equality of the differentiaf:

2 2 2
dA = {aA K(B— V)aC uAaC 12v6C lVAZaC psVAa—C}dt

ot oV 0A vz ot 0AIV
&
aC aC
+e\/\76—vdw+ \/\_/Aa—Adz (A.25)
dX = aA(u—r)dt+avVAdz+rXdt+bdw — rbwdt (A.26)

with

p = the correlation between the two Wiener processesrdi dw.

Since A.25) is also valid for the second derivatiVé, one can insert this in equa-
tion (A.26) and write:

e\/vg—\c/:dw+ \/\_/A%idz+édt = aA(u—r)dt+avVAdz+rXdt

—rbWdt + bWdt + be Vv g_\\llvdw+ A A%lez. (A.27)

When setting the coefficients of the Wiener processeard! dv equal on both

" The parametera andb are time-dependent as they are the weight factors of a self-financing
replication strategy but stay unchanged in the equation for the evolution of the portfolio. See
[KK99], p. 62f, 671, 70f.

8 This can be derived with a two-dimensional version of Ito’s Lemma, EBS((, p. 44.



APPENDIXA. MATHEMATICAL METHODS IX

sides of equationX.27) one can write:

ow aC
ow ac
bs\/\_/W = W (A.28)
This leads to:
aC
b = 2 (A.29)
Y
ac Fow
a = —NMZ (A.30)
oW
0A W 9A
From inserting A.29) and (A.30) in (A.28) follows:
1 | oW ow ow 1 azw
y{ﬁ“@ Vv A T Vv
1 ,0°W 92w
—VA2— eVA——— — W
T2V aaz TPV ASuea T }
1 [ow acC oC 1, ,60°C
— V) +rA— + Zg2v <
av{at KO-VIgv T T35V ovz
1., .,0°C oc

Since the left side of this equation only depends upbrthe right side only upon

C and the derivativ®V can be chosen to be an arbitrary derivative with the same
underlying stock, both sides of the equation must be equal to a furictiaiv,t),

the so-called market price of risk/volatility. This function is chosen to be time-
constant and independent of the actual stock price level and assumed to be propor-
tional to the variance levél:

AAV,t) = AV. (A.32)

9 For stock price options the market price of risk is always positive.
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Equations A.31) and A.32) lead to the following partial differential equation for
Heston’s model:

1., ,0°C 0°C 1, ,0°C oC
SVA =5 +PEVA L + eV s +TAS
aC oC
+ [K(O-V)=AV] & —1C+ == = 0. (A.33)

This partial differential equations can then be used to evolve an exact solution
via Fourier transformatiot? Similar equations lead to the exact caplet pricing
formulae in Chapte8.

A.5 Drawing the Random Jump Size for Glasser-
man, Merener (2001)

To determine the random jump size in this model one has to produce a table with
the cumulated distribution function (CDF), drawing an equally distributed random
number and looking up the jump size in the table.

The density is given by:

fi(y) +yf
f(y) = —1(y2) +r);ll(Y) (A.34)
with
fl(y) ~ LN(aJ-vﬁ%
m = eal+§/2—l.
Then the density of4(y):
fi(y) = \/ZlTslye%('”[y]al)z/ﬁ (A.35)

10 See Hes93, p. 330f.
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leads to:

fly) =

1+y
24+m

fi(y) =

1+y
(24 my) /2181y

o S(nly-ap)?/$

Xl

(A.36)

The CDF can then be computed via:

1 /y 1—|—Ve,%(|n[v]*al)2/§dv
(2+my)v2ms Jo v

Fly) =

J/

substitutingx = In[y]
1

In[y]
/ 3(x-a1)?/s 4y
(2+my)v2ms; J-w

(1+€e”

—00

1 Inly]  x 1 2
g 2(x-a1) /ﬁdx+/ e 30a)?/Syy
V2TS,

-
) o

1 Iny] 1
24+ m _/_oo \/_T[Sl
1 ( 1) 1 st 2 (
2+ m1

o 1 —az
n 2+m1

+(1+m)® <

A.6 Parameters for Jarrow, Li, Zhao (2002)

The additional parametef, 31 and; in the model of Jarrow, Li and Zhao intro-
duced in Sectio®.1are given as followd?

l23

(T3

1 |fz
2me

1 1 2

1 3
Qa1 — 3031051+ 203, — 50030 — 3010020

1 1
+3 (921 - ZQZQlo> (931— Q3 — ZQZ (Q20+ Q%o)) (A.38)

11 see Frio4], p. 152.
12 see pBRO1], p. 32.
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and

[ 1
B1 = Q_z{ (23 (on 3Q10+2Q10(Q21—ZQ2Q10>)

Ti)3
+§m Q30— 9Q10€Q20+ 3Q10 931—921—ZQ (Qo0+ Q1)
1
+12(2§0+3(921—Z§22910> (Q20—30Q%) } (A.39)
4 l2,3 3 1%,
B = Q (T|) Q 2(T) QlO(QZO 3910) (A.40)
wheré3
Q = Q(O,Lf”,c), (A.41)
1 Ti Ti
b = —EV(O) eK“p(u)/ e “p?(v)dvdu. (A.42)
0 u

Due to the nested nature of the triple intedsad (p(t) is an integral itself) it can
be numerically integrated in a single loop.

13 See PBRO1], p. 12f.
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Additional Figures

All figures given in this appendix are for US-$ caplets and swaptions.

To Section 3.2 Sample Data

120%
—=—1year —=— 5years

2 years 10 years
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100%
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60%
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0% I I I I I I I I I I I I |
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Figure B.1: Caplet volatility smiles for different expiries.
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Figure B.2: Swaption volatility smiles for 1 year expiry and different tenors.

To Section 4.1 Displaced Diffusion
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Figure B.3: The fit across moneynesses to the market implied caplet volatil-
ities with the displaced diffusion model for different expiries; = 3300%
O =7700% a5 =41.2%andoyg = 21.1%.
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To Section 4.2 Constant Elasticity of Variance
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Figure B.4: The fit across moneynesses to the market implied caplet volatilities
with the constant elasticity of variance model for different expirigs—= 0.004,
y> = 0.008 y5 = 0.07 andyyo = 0.18.

To Section 4.5 Mixture of Lognormals

120% —— lymarket — 1y MoL
—*— 2y market —— 2y MoL
100% 5y market —— 5y MoL
- —=— 20y market 20y MoL
= 80%
i
o
> 60%
o
2
EL 40% -
[ —
20% A=
O%‘Twwwwwwww
-2 -15 -1 -05 0 05 1 15 2
Moneyness

Figure B.5: The fit across moneynesses to the market implied caplet volatilities
with the mixture of lognormals model for different expiri@s = 55%, 6, = 48%,
65 = 56%and B,y = 74%
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Figure B.6: The fit across moneynesses to the market implied caplet volatilities
with the extended mixture of lognormals model for different expirflas= 0%,

011 =19% G12 = 72% B2 = 0%, G271 = 11% G2 = 58% P5 = 14% Gs51 =

11% 6’572 = 33% Bzo = 0.2%, 620’1 =8%and 6’2072 =17%

To Section 6.2 Andersen, Andreasen (2002)
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Figure B.7: The fit across moneynesses to the market implied caplet volatili-
ties with Andersen/Andreasen’s stochastic volatility model for different expiries.
O12 = 4904, 023 = 389, 05,6 = 259, 02021 = 14% Kk = 12%ande = 91%
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To Section 6.4 Wu, Zhang (2002)
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Figure B.8: The fit across moneynesses to the market implied caplet volatilities
with Wu/Zhang’s stochastic volatility model with correlation for different expiries.
01 = 66% prv = —65% 02 = 62% poyv = —73% 03 = 53% p3v = —65%

04 = 43% psyv = —55% K = 4% ande = 221%

To Section 7.3 Glasserman, Kou (1999)
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Figure B.9: The fit across moneynesses to the market implied caplet volatilities
with Glasserman/Kou’s jump model for different expirieg.= 34% A1 = 11%

$1 =357% my = —99.99% 02 = 23% Ay = 8%, S, = 546% My = —97% 05 =

17% A5 = 2%, S5 = 254% mg = —89% 029 = 10% Aog = 1%, S0 = 151%and

Myo = —92%
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To Section 7.4 Kou (1999)
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Figure B.10: The fit across moneynesses to the market implied caplet volatilities
with Kou’s jump model for different expiries; = 34% A1 = 11% n; = 500%

&1 = —15 02 =23% A2 = 8%, N2 =500% &2 = —18.6, 05 = 17% A5 = 2%,

Ns = 254% &5 = —5.4, 020 = 10% A0 = 1%, N2o = 151%and &0 = —3.7.

To Section 9.2 Stochastic Volatility with DD

120% —— lymarket — 1y SV, DD
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Figure B.11: The fit across moneynesses to the market implied caplet volatilities
with the stochastic volatility and displaced diffusion model for different expiries.
01,2 =53% B1,2 = 3%, 023 =42% By 3= 3%, 056 = 26% P56 = 10% 02021 =

14% [320721 = 20%, € = 200%andk = 35%
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Figure B.12: The fit across moneynesses to the market implied swaption volatil-
ities with the stochastic volatility and displaced diffusion model for expiry in
one year and different tenorss; o = 53% B12 = 3%, 013 = 47% P13 = 3%,

O16 = 33% Bl,6 = 2%, 0121 = 21%, [31721 = 15%, € = 200%andk = 35%
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Calibration Tables for SV and DD

o Tenors (T¢-T,)
" 1y 2y 3y 4y 5y 6y 7y 8y g9y 10y
ly || 31,7% 28,6% 25,6% 23,4% 21,8% 20,9% 20,0% 19,3% 18,7% 18,0%
2y || 27,8% 24,4% 225% 20,9% 19,4% 18,7% 17,9% 17,4% 16,8% -
3y || 24,7% 22,4% 20,6% 19,1% 17,8% 17,3% 16,7% 16,2% - -
g 4y || 22,4% 20,6% 18,9% 17,7% 16,7% 16,2% 15,7% - - -
4 | Sy |[ 20,2% 18,9% 17,4% 16,4% 15,7% 15,3% - - - -
%_ 6y || 18,7% 17,8% 16,5% 15,8% 15,2% - - - - -
S 7y || 17,2% 16,5% 15,6% 15,1% - - - - - -
8y || 16,6% 15,9% 15,1% - - - - - - -
oy [ 159% 153% - - - - - - - -
10y[ 1529% - - - - - - - - -

B Tenors (T¢-T,)
" 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
ly || 34,7% 20,7% 6,2% 6,2% 3,7% 40% 68% 68% 7,0% 7,1%
2y |[ 25,6% 105% 55% 58% 28% 56% 30% 32% 3,4% -
3y || 28,1% 114% 6,6% 29% 27% 28% 29% 2,9% - -
g 4y || 25,2% 17,0% 8,7% 32% 31% 29% 2,7% - - -
g | Sy || 27.5% 14,1% 12,6% 2,7% 29% 2,7% - - - -
%_ 6y || 18,0% 12,7% 53% 3,1% 3,0% - - - - -
S 7y 53% 34% 3,0% 3,3% - - - - - -
8y 34% 3,3% 3,1% - - - - - - -
oy [ 32% 31% - ; ; ; ; ; ; ;
oyl 30% - ; ; ; ; ; ; ; ;

Table C.1: Calibrated parameters; s and 3, s after step 1.

XX
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ai(t) Forward rate resetting in (T;-t)

' 1y 2y 3y 4y 5y 6y 7y 8y g9y 10y
Oy [[ 31,7% 26,5% 22,1% 19,9% 19,3% 21,0% 19,2% 20,5% 19,3% 17,4%
ly || 29,0% 21,6% 21,2% 17,4% 11,3% 19,9% 11,8% 18,5% 17,8% -
2y | 29,5% 21,3% 17,7% 182% 5,4% 22,3% 13,8% 17,6% - -
3y || 26,6% 22,1% 155% 184% 5,0% 17,7% 13,4% - - -

é dy || 23,6% 23,2% 13,0% 15,0% 7,7% 17,8% - - - -
= | 5y |[ 20.2% 26,0% 14,6% 14,1% 6,1% - - - - -
6y | 9,6% 285% 11,2% 15,8% - - - - - -
7y | 3,0% 29,5% 7,0% - - - - - - -
8y || 3,0% 26,4% - - - - - - - -
9y [ 3,0% - - - - - - - - -

Table C.2: Bootstrapped parameters(t) after step 2, substep 1.

ai(t) Forward rate resetting in (T;-t)

' 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
Oy || 31,2% 26,9% 22,9% 20,7% 19,0% 18,1% 17,6% 17,2% 16,5% 15,6%
ly || 27,6% 23,9% 20,6% 18,1% 16,5% 15,7% 15,4% 15,3% 15,3% -
2y || 25,6% 22,5% 19,1% 16,7% 15,1% 14,4% 14,0% 14,1% - -
3y || 23,8% 21,0% 18,2% 15,9% 14,6% 13,9% 13,2% - - -

é 4y || 22,8% 20,6% 18,0% 16,1% 14,9% 14,1% - - - -
= | 5y 21,7% 19,7% 17,5% 15,8% 14,6% - - - - -
6y || 20,6% 19,0% 17,1% 15,5% - - - - - -
7y || 20,0% 18,6% 16,8% - - - - - - -
8y [ 194% 183% - - - - - - - -
oy [ 189% - - - - - - - - -
o Tenors (T¢-T,)

" 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
ly || 31,2% 28,6% 25,9% 23,8% 22,1% 20,8% 19,7% 18,8% 18,0% 17,3%
2y |[ 27,2% 24,9% 22,9% 21,2% 19,9% 18,8% 17,9% 17,2% 16,5% -
3y || 24,1% 22,4% 20,8% 19,3% 18,2% 17,3% 16,5% 15,9% - -

g 4y || 21,9% 20,4% 19,0% 17,8% 16,9% 16,1% 15,5% - - -
4 | Sy |[ 20,1% 18,9% 17,7% 16,8% 16,0% 15,3% - - - -
%_ 6y || 18,7% 17,7% 16,8% 16,0% 15,3% - - - - -
S| 7y || 17,6% 16,8% 16,0% 15,3% - - - - - -
8y || 16,9% 16,2% 15,5% - - - - - - -
oy [ 163% 157% - ; ; ; ; ; ; ;
oyl 157% - : ; : ; ; : : :

Table C.3: Optimized parametersj(t) and the resultingoy

step 2.

after step 2, sub-
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0 Forward rate resetting in (T;-t)

! 1y 2y 3y 4y By By 7y 8y 9y 10y
Oy || 34,7% 4,5% -30,8% 10,9% -24,2% 24,1% 285% 19,7% -3,5% 8,9%
ly [[ 51,1% 22,1% -25,0% 34,6% -40,6% 2,4% -50% 22,2% -7,2% -
2y || 100% 20,4% -26,0% -39,2% -50% 15,7% 25,5% 19,0% - -
3y || 100% 100% 32,1% -50% -50% -50% -50% - - -

é 4y || 100% 100% 100% -50% -50% 37,1% - - - -
= | 5y || 100% 100% 100% 100% 100% - - - - -
6y || 100% -50% -50% -50% - - - - - -
7y [|-23,5% 7,5% 23,6% - - - - - - -
8y || 7.8% 2,6% - - - - - - - -
9y || 0,9% - - - - - - - - -
B*r s Tenors (T¢-T,)
' ly 2y 3y 4y 5y 6y 7y 8y 9y 10y
ly || 34,7% 20,8% 6,4% 6,7% 19% 42% 66% 78% 7,1% 7,2%
2y || 25,4% 113% 6,0% 42% 29% 46% 35% 3,7% 3,6% -
3y || 26,1% 148% 74% 29% 25% 19% 26% 2,9% - -
E 4y | 21,1% 17,3% 10,6% 6,9% 43% 3,7% 3,1% - - -
2 | Sy || 224% 16,1% 12,6% 69% 4,9% 42% - - - -
ig 6y || 13,1% 123% 55% 3,3% 2,6% - - - - -
Sy 48% 11% 15% 25% - - - - - -
8y [| 34% 33% 3,1% - - - - - - -
dy || 3.2% 3,1% - - - - - - - -
10y || 3,0% - - - - - - - - -

Table C.4: Optimized parameterB;(t)

step 3.

and the resulting3;

after step 2, sub-
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o Tenors (T¢-T,)

O OrsITv 2y 8y 4y By 6y 7y 8 9y 10y
ly [ 0,5% 0,0% -0,3% -0,4% -03% 01% 03% 05% 0,7% 0,7%
2y || 05% -05% -0,4% -0,3% -0,4% -0,1% 0,0% 02% 0,3% -
3y || 05% 0,0% -02% -02% -04% 0,0% 01% 0,3% - -

E 4y | 04% 02% -0,1% -02% -02% 0,1% 0,2% - - -

g (5] 01% 01% -03% -04% -0,3% 0,0% - - - -

% 6y || -0,1% 0,1% -0,3% -0,2% -0,1% - - - - -

S 7y | -04% -04% -05% -0,3% - - - - - -
8y || -0,3% -0,3% -0,4% - - - - - - -
9y || -0,4% -0,3% - - - - - - - -
10y || -0,6% - - - - - - - - -

Br.- B*rs Tenors (T¢-T,)

’ ’ ly 2y 3y 4y 5y 6y 7y 8y 9y 10y
ly [ 0,0% -0,1% -0,2% -05% 18% -02% 0,2% -09% -0,1% -0,1%
2y || 02% -0.8% -05% 16% -0,1% 1,0% -0,5% -0,6% -0,3% -
3y || 20% -34% -08% 00% 02% 09% 03% 0,1% - -

E 4y | 41% -0,3% -19% -3,7% -12% -0,8% -0,4% - - -

g 5| 51% -20% 00% -43% -2,0% -15% - - - -

% 6y || 49% 03% -02% -0,2% 0,4% - - - - -

Sl 7y 05% 24% 15% 0,8% - - - - - -
8y || 0,06 0,0% 0,0% - - - - - - -
9y || 0,0% 0,0% - - - - - - - -
10y|| 0,0% - - - - - - - - -

Table C.5: The differences between the parameters obtained in stepslafd
Brs) and the parameters determined by the forward rate parameters obtained in
step 2.
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