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The LIBOR Market Model and the

Volatility Smile
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Chapter 1

Introduction

There are many different models for valuing interest rate derivatives. They differ

among each other depending on the modeled interest rate (e.g. short, forward or

swap rate), the distribution of the future unknown rates (e.g. normal or lognormal),

the number of driving factors (one or more dimensions), the appropriate involved

techniques (trees or Monte Carlo simulations) and different possible extensions.

One of the most discussed models recently is the market model presented in

[BGM97], [MSS97] and [Jam97]. The development of this model has two main

consequences. First, for the first time an interest rate model can value caplets or

swaptions consistently with the long-used formulæ of Black. Second, this model

can easily be extended to a larger number of factors. These two features, com-

bined with the fact that this model usually needs slow Monte Carlo simulations for

pricing non plain-vanilla options, lead to using this model mainly as a benchmark

model. This usage as a benchmark additionally enforces the need for consistent

pricing of all existing options in the market.

Two main lines of actual research exist. On the one hand, more and more complex

derivatives are coming up in the market. As they usually depend heavily upon the

correlation matrix and/or the term structure of volatility and/or a large number of

2



CHAPTER 1. INTRODUCTION 3

forward rates, many new efficient techniques are needed, e.g. for implementing

exercise boundaries, computing deltas ...1

On the other hand, there is still a big pricing issue left with the underlying plain-

vanilla instruments. The original model is calibrated with these instruments but

only with the at-the-money (= ATM) options. The market price of options in or

out of the money is almost always very different from the price actually computed

in the ATM-calibrated model. This behavior is not only troublesome for these

plain-vanilla instruments but also for more complex derivatives such as Bermudan

swaptions.

This thesis concentrates on the latter line of research and gives an overview of

many possible ways of incorporating this volatility smile. It tries to focus on

the implementation and calibration of these models and to give an overview of

the advantages and shortcomings of each model. The main goal will be to fit

the whole term-structure of all forward rates with one model rather than pricing

only one single volatility smile, i.e. the smile of caplets on one forward rate with

different strikes, as close as possible. Special attention is drawn to the model

implied future volatility smiles since these model immanent prices have a strong

influence on exotic derivative prices and are not controllable but determined by

the chosen model.

Chapter 2 starts with introducing the LIBOR market model and the involved tech-

niques for calibrating the model and pricing derivatives. In Chapter 3 the volatil-

ity smile is examined and the desired features of possible extensions are discussed.

The second part of this thesis discussing possible basic models and elaborating the

advantages but even more the shortcomings of each is divided into four chapters.

In Chapter 4 the local volatility models are introduced, Chapter 5 presents uncer-

tain volatility models, in Chapter 6 stochastic volatility models are discussed and

Chapter 7 gives an overview of models with jump processes. The third part com-

pares these basic models and basing on the findings suggests advanced, combined

models. In Chapter 8 the model implied future volatility skew is compared and

building on these findings combined models are proposed. In Chapter 9 these

1 See e.g. [Pit03a].
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advanced models are tested trying to reach the goal of fitting the whole term-

structure of volatility smiles. Chapter 10 finally summarizes and gives an outlook

of still existing problems and suggestions for future research.

The comparison rather than the mathematical derivation of these models is the

main goal of this thesis. Mathematical concepts are therefore explained ”on de-

mand” during the text or deferred to Appendix A.



Chapter 2

The LIBOR Market Model

In this chapter the basics of the market models established by [BGM97], [MSS97]

and [Jam97] shall be introduced first. The focus of this thesis will be on the

LIBOR market model which models the evolution of forward rates of fixed step

size as a multi-factorial Ito diffusion. After describing the input quantities of

the model (yield curve, volatility, correlation), at the end of the chapter different

techniques for pricing interest rate derivatives will be presented and a summary of

differences to other models will be given.1

2.1 Yield Curve

In every model as a first step one has to build up the yield curve from plain vanilla

instruments without optionality. In the market there are different instruments avail-

able: cash (= spot) rates, forward rate agreements (FRAs), futures and swap rates.

Depending on the currency, the most liquid ones are chosen to span the curve.

Usually, for US-$ short term interest rates one to three cash rates (1 day, 1 month

and 3 months LIBOR) and 16 to 28 Euro-Dollar futures are used, i.e. starting with

the front future the three-months LIBOR futures for 4 up to 7 years. 4 to 9 swap

1 For a more comprehensive overview over deriving the LIBOR market model and pricing deriva-
tives see [Mei04].
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CHAPTER 2. THE LIBOR MARKET MODEL 6

rates (5, 7, 10, 12, 15, 20, 25, 30 and 50 years) span the long-term part of the yield

curve.2

As the reset dates of the Euro-Dollar futures are fixed they usually do not coincide

with the fixed step size of the LIBOR market model, where one assumes that –

depending on the currency – every 3 or 6 months in the future one forward rate

resets. Therefore, the discount factors are used to compute all needed forward

LIBOR ratesL(t,T,T +δ) at timet for any reset dateT and tenorδ:

L(t,T,T +δ) =
(

P(t,T)
P(t,T +δ)

−1

)
/δ (2.1)

whereP(t,T) is the price of a discount bond at timet with maturityT.

Since one not only wants to price derivatives with reset dates that coincide with

the reset dates chosen in the model but also other non-standardized derivatives

that are usually traded ”over the counter” (= OTC), a ”bridging-technique” for

interpolating the required forward rates is used.3 For ease of presentation in the

following this problem is neglected. When in the model these forward rates are

evolved over time one can see the first big advantage of the LIBOR market model:

these forward rates are actually market observables.4

2.2 Volatility

For evolving these forward rates, that have been defined in the previous section,

over time one has to determine two parts. The first part is the uncertainty, i.e. the

random up or down moves with a specified volatility. This part is independent of

2 How many of those instruments are actually chosen mainly depends on the liquidity of these
derivatives. The number of forward rates that have to be evolved in the LIBOR market model
over time is chosen independently of this.

3 See [BM01], p. 264-266.
4 Although the forward rate in the LIBOR market model is not exactly the same as the Euro-

Dollar future rate, OTC forward rate agreements that have exactly the same specification as
the forward rate in the model can be traded. With models using spot or instantaneous forward
rates this is not possible.
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the chosen probability measure.5 The second part is the deterministic drift of the

forward rate depending on the chosen measure. For each forward rate there exists

one special measure for which the drift equals 0. This measure then is called the

(respective) forward or terminal measure.

With the assumption that the forward rates follow a lognormal evolution over time,

we can write for the forward rateLi(t) = L(t,Ti ,Ti+1) the

Forward Rate Evolution: q

dLi(t) = Li(t)µi(t)dt +Li(t)
m∑

k=1

σik(t)dz(k) (2.2)

where

µi(t) = the drift of the forward LIBOR rateLi(t) under the chosen

measure,

m = the number of factors/dimensions of the model,6

σik(t) = the volatility of the logarithm of the forward rateLi(t) com-

ing from factork,

dz(k) = the Brownian increment of factork.7
y

With simplifying

σ2
i (t) =

m∑
k=1

σ2
ik(t) and bik(t) =

σik(t)
σi(t)

(2.3)

equation (2.2) can be written as8

dLi(t)
Li(t)

= µi(t)dt +σi(t)
m∑

k=1

bik(t)dz(k) = µi(t)dt +σi(t)dzi (2.4)

5 For a concise definition and explanation of these concepts see [Reb00], p. 447-490.
6 The number of forward ratesn can be larger thanm, the number of factors.
7 When talking about the volatility of a forward rate one – strictly speaking – refers to the

volatility of the logarithm of the forward rate.
8 See [Reb02], p. 71.
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with

dzi =
m∑

k=1

bik(t)dz(k),

b(t) = then×m matrix of the coefficientsbik(t)

where it can easily be seen that the covariance of different forward rates can be

separated into the volatility of each forward rate and the correlation matrixρ(t).
As will be shown in the following sections the volatilityσi(t) is calibrated as time-

dependent and the correlation matrix is restricted to be totally time-homogeneous

(ρi+k, j+k(t +kδ) = ρi, j(t) for all k = 0,1, ...) for reducing the degrees of freedom:

ρ(t) = b(t)b(t)T (2.5)

with ρi, j(t) denotes the instantaneous correlation between the forward ratesLi(t)
andL j(t).

As a first step the volatility for each forward rate has to be computed. This is done

by taking the market observable price of an ATM caplet with this specific for-

ward rate as underlying and solving for the implicit volatility in Black’s formula,

introduced in his seminal article.9

2.2.1 Black’s Formula for Caplets

The payoff of a caplet at timeTi+1 is given by:10

Payoff(Caplet)Ti+1 = NP[Li(Ti)−K]+δ (2.6)

where

K = strike,

NP = notional.
9 See [Bla76], p. 177.

10 See [Reb02], p. 32f.
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The underlying assumption in Black’s formula is the lognormal distribution of the

forward rate. This leads to:

ln [Li(Ti)] ∼ N

(
ln [Li(t)]−

1
2

σ2
i (Ti − t),σ2

i (Ti − t)
)

(2.7)

where

N(a,b) = the Gaussian normal distribution with meana

and varianceb,
σi = the annualized volatility of the logarithm of the

forward rateLi(t).

From this distribution together with equation (2.6) follows

Black’s Caplet Pricing Formula: q

Caplet(0,Ti ,δ,NP,K,σi) = NPδP(0,Ti+1)Bl(K,Li(0),v) (2.8)

where

Bl(K,Li(0),v) = Li(0)Φ(h1)−KΦ(h2),

Φ(x) = the cumulated normal distribution forx,

h1 =
ln [Li(0)/K]+ 1

2v2

v
,

h2 = h1−v,

v = σi
√

Ti .
y

With this formula and market prices for caplets one can then compute the market

implied annualized volatility of the logarithm of the forward rateσ̂i . For brevity

reasons this parameter is usually just called volatility of the forward rate.
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2.2.2 Term Structure of Volatility

Having computed the volatility for each forward rateLi(0) cumulated over the

lifetime of the rate (Ti) the next step is to determine how this volatilityσ̂i can

be distributed over this time. One extreme would be to say that one rate keeps

the same volatility throughout its lifetime, i.e. a time-constant volatility. This

clearly contradicts evidence from historical market data where it can be seen that

a similar shape for the term structure of the volatility of forward rates almost

always prevails in the markets. The other extreme is a totally time-homogeneous

term structure of volatility, i.e. the volatility of a forward rate purely depends on

the time to maturity:11

σi+k(kδ) = σi(0) for all k = 0,1, ... (2.9)

In this case, all new volatilities with increasing maturity can be bootstrapped via:12

σi(0) =

√√√√ σ̂2
i Ti

δ
−

i−1∑
k=1

σ2
k(0)

=

√
σ̂2

i Ti − σ̂2
i−1Ti−1

δ
. (2.10)

For always having positive values forσi(0) one sees clearly the necessary require-

ment in equation (2.10): σ̂2
i Ti must be a monotonous increasing function ofi.

Unfortunately this precondition is not generally fulfilled and even if, the results

obtained with this technique are not always very stable. Therefore, one imposes

additional structure on the volatility of the forward rate:13

σi(t) = f (Ti − t) = [a+b(Ti − t)]e−c(Ti−t) +d. (2.11)

11 See [BM01], p. 195.
12 See [Reb02], p. 149.
13 See [Reb99], p. 307.
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This function generates exact time-homogeneity and ensures non-negativity of

volatilities. It is flexible enough to be fitted not only to the usual humped shape

but also to a monotonous decreasing volatility structure that prevails sometimes

in the markets.

This proposed function, however, is not sufficient to fit all implied caplet volatili-

ties exactly and can be extended by two additional steps leading to:14

σi(t) = f (Ti − t)g(t)h(Ti). (2.12)

In an optional first stepg(t) is determined to reflect time-dependent movements

in the level of volatility. To avoid modeling noise another structure is imposed

on this function. Usually it is modeled as a sum of a small number of sine waves

multiplied with an exponentially decaying factor.

To ensure the exact recovery of market prices of ATM caplets as a second step

h(Ti) is computed:15

h(Ti) = 1+δi =

√√√√√ σ̂2
i Ti∫ Ti

0
f (Ti −u)2g(u)2du

. (2.13)

Ideally the resultingδi should be very small.

With this functional form and these one or two additional steps the volatility of

each forward rate has been distributed over time to ensure non-negativity, approx-

imate time-homogeneity and exact replication of market prices of caplets.

2.3 Correlation Matrix

Having found a pricing formula for caplets and having determined the term-

structure of volatilities, for pricing swaptions one also needs the correlation ma-

14 See [Reb02], p. 165f.
15 See [Reb02], p. 387.
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trix ρ between the forward rates from equation (2.5). These correlations are the so-

called instantaneous correlations. The terminal correlations between the forward

rates that can be estimated from historical market data are different as they not

only depend upon the instantaneous correlations but also upon the term-structure

of volatilities. This effect can be approximated via:16

Corr(L j(Ti),Lk(Ti)) ≈ ρ j,k(t)

∫ Ti
0 σ j(t)σk(t)dt√∫ Ti

0 σ2
j (t)dt

√∫ Ti
0 σ2

k(t)dt
(2.14)

with

ρ j,k(t) = the instantaneous correlation between the for-

ward ratesL j(t) andLk(t),

Corr(L j(Ti),Lk(Ti)) = the terminal correlation between the forward

ratesL j(t) and Lk(t) for the evolution of the

term-structure of interest rates up to timeTi .17

However, this is only an approximation and additionally the terminal correlations

depend upon the chosen measure. Another way for using historical market data

to determine the correlation matrix is to estimate the instantaneous correlation

directly. Choosing a step size of one day is sufficiently small for being measure

invariant.

Generally, there are three ways of determining this instantaneous correlation ma-

trix. First, one could use historical terminal correlations and then use (2.14) to

determine the instantaneous correlations. Second, one could estimate the instan-

taneous correlation directly. Third, actual market prices of European swaptions

can be used. Especially considering the problems with the measure-dependent

terminal correlations, illiquid swaption prices, bid-ask spreads and the heavy in-

fluence a little price change would have on the ”implied” correlations, the second

approach seems preferable.

16 See [BM01], p. 219.
17 While the instantaneous correlations were set to be time-constant, the terminal correlation

between two forward rates is not, as it also depends upon the time-varying volatilities.
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2.3.1 Black’s Formula for Swaptions

When deciding for the second approach, however, one needs first an analytic for-

mula for efficiently pricing swaptions for avoiding the computational expensive

step of a simulation. Starting with the payoff of a swaption

Payoff(Swaption)Tr
= NP[Sr,s(Tr)−K]+

δ
P(0,Tr)

s−1∑
i=r

P(0,Ti +1) (2.15)

and the assumption that the swap rate is lognormally distributed18

ln [Sr,s(Tr)] ∼ N

(
ln [Sr,s(t)]−

1
2

σ2
r,s(Tr − t),σ2

r,s(Tr − t)
)

(2.16)

where

Sr,s(t) = the equilibrium swap rate, i.e. the swap rate leading to

a swap value of 0, from the first reset date inTr to the

last payment of the underlying swap inTs,

σr,s = the annualized volatility of the logarithm of the swap

rateSr,s(t),

one gets

Black’s Swaption Pricing Formula: q

Swaption(0,Tr ,Ts,NP,K,σr,s) = Bl (K,Sr,s(0) ,v)δNP
s−1∑
i=r

P(0,Ti+1) (2.17)

where

Bl (K,Sr,s(0),v) = Sr,s(0)Φ(h1)−KΦ(h2) ,

h1 =
ln [Sr,s(0)/K]+ 1

2v2

v
,

h2 = h1−v

18 See [Reb02], p. 35f.
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and

v = σr,s
√

Tr .
y

As for caplets the above formula and market data can be used to calculated the

market implied volatility of the swap ratêσr,s.

2.3.2 A Closed Form Approximation for Swaptions

Although the swap rates in the forward rate based model are not exactly lognor-

mally distributed, their distribution is very close to the lognormal one, so that

Black’s formula for swaptions (2.17) can be used.19 Using the presentation of a

swap rate as a linear combination of forward rates

Sr,s(t) =
s−1∑
i=r

ωi(t)Li(t) (2.18)

where

ωi(t) =
P(t,Ti+1)∑s−1
j=r P(t,Tj+1)

, (2.19)

the volatility of swap rates can be computed by differentiating both sides of the

equation:20

dSr,s(t) =
s−1∑
i=r

[ωi(t)dLi(t)+Li(t)dωi(t)]+(. . .)dt

=
s−1∑
h=r

dLh(t)
s−1∑
i=r

[
ωh(t)δh,i +Li(t)

∂ωi(t)
∂Lh(t)

]
+(. . .)dt (2.20)

19 See [BM01], p. 229.
20 See [BM01], p. 246-249.
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where

δi,i = 1,

δi,h = 0, for i 6= h,

∂ωi(t)
∂Lh(t)

=
ωi(t)δ

1+δLh(t)

∑s−1
k=h

∏k
j=r

1
1+δL j (t)∑s−1

l=r

∏l
m=r

1
1+δLm(t)

−1i≥h


=

ωi(t)δP(t,Th+1)
P(t,Th)

[∑s−1
k=h P(t,Tk+1)∑s−1
l=r P(t,Tl+1)

−1i≥h

]
. (2.21)

One fixes:

ωh(t) = ωh(t)+
s−1∑
i=r

Li(t)
∂ωi(t)
∂Lh(t)

. (2.22)

For ease of computation the coefficientsωi(t) are frozen at timet = 0. Equations

(2.20) and (2.22) then lead to:

dSr,s(t) ≈
s−1∑
i=r

ωi(0)dLi(t)+(. . .)dt. (2.23)

The quadratic variation of that equals:

dSr,s(t)dSr,s(t) ≈
s−1∑
i=r

s−1∑
j=r

ωi(0)ω j(0)Li(t)L j(t)ρi, j(t)σi(t)σ j(t)dt.

As a second approximation the forward rates are frozen at timet = 0 leading to a

percentage quadratic variation:(
dSr,s(t)
Sr,s(t)

)(
dSr,s(t)
Sr,s(t)

)
= dlnSr,s(t)dlnSr,s(t)

≈
s−1∑
i=r

s−1∑
j=r

ωi(0)ω j(0)Li(0)L j(0)
S2

r,s(0)
ρi, j(t)σi(t)σ j(t)dt.
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The variance for Black’s formula for swaptions can be computed as the integral

over the percentage quadratic variation during the life-time of the option:

σ2
r,s ≈

s−1∑
i=r

s−1∑
j=r

ωi(0)ω j(0)Li(0)L j(0)ρi, j(t)
S2

r,s(0)

∫ Tr

0
σi(t)σ j(t)dt. (2.24)

The result of equation (2.24) can then be used in (2.17) for pricing swaptions

and is called Hull and White’s formula. This obtained fast pricing method for

swaptions is essential for computing the correlation matrix efficiently.

2.3.3 Determining the Correlation Matrix

Independent of having a correlation matrix from historical market data or from

current swaption market prices it is usually preferable to smooth this matrix and

present the data with a small number of parameters. The following one factor

parametrization could be seen as a minimalist approach:

ρi, j = e−c|Ti−Tj | (2.25)

with c being a small positive number.

Generally, when trying to fit a parametric estimate to a correlation matrix, this

parametric form should be able to incorporate these three empirical observa-

tions:21

1. The correlation between the first and the other forward rates is a convex

function of distance.

2. The correlation between the first and the last forward rate is positive.

3. The correlation between two forward rates with the same distance is an

increasing function of maturity.

21 See [Reb02], p. 183f, 190.
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The last condition, especially, is violated by many approaches, for example the

one factor form in (2.25).

One parametric approach, fulfilling all three conditions, although needing only

two parameters, is:22

ρi, j = exp

[
| j− i|
n−1

(
lnρ∞−d

i2 + j2 + i j −3ni−3n j +3i +3 j +2n2−n−4
(n−2)(n−3)

)]
(2.26)

where
i, j = 1, ...,n,

0 < d < − lnρ∞.

With this formula the two parameters(ρ∞,d) can be estimated iteratively so that

they fit the historic correlation matrix or prices of swaptions and maybe even other

correlation sensitive derivatives as closely as possible. The parameterρ∞ can be

interpreted as the positive correlation between the first and the last forward rate;

d determines the difference betweenρ1,2 andρn−1,n. For the usual case where

ρn−1,n > ρ1,2, i.e. the correlation between two adjacent forward rates is increasing

with maturity,d takes positive values.23

2.3.4 Factor Reduction Techniques

For efficient valuation of derivatives the correlation matrix has to be reduced to

a smaller number of factors as with the number of factors the number of random

numbers that have to be drawn increases and thereby slows down the simulation of

the forward rates. Another reason for keeping the number of factors rather small

is trying to explain these factors with usual market movements. The first factor is

interpreted as a shift of the yield curve (= simultaneous up or down movement of

the forward rates), the second factor as a tilt of the curve (= the forward rates close

to the reset date and the forward rates far away from the reset date move in oppo-

site directions) and the third factor as a butterfly movement, where forward rates

22 See [SC00], p. 8.
23 For more different parametric forms for the correlation matrix and a comparison of them, see

[BM04], p. 14-18.
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close to and far away from the reset date move stronger in the same direction than

forward rates in between. These factors can easily be understood and increasing

their number far beyond this is usually avoided.

One possible technique for reducing to a number of factorsm smaller than the

number of forward ratesn shall be presented here.24 From equation (2.3) follows:

m∑
k=1

b2
ik = 1. (2.27)

The following parametrization can be chosen to ensure that this condition is ful-

filled:25

bik = cosθik

k−1∏
j=1

sinθi j for k = 1, ...,m−1,

bim =
m−1∏
j=1

sinθi j .

(2.28)

As a first step these(m−1)n different θi j are chosen arbitrarily. Inserting these

values as a second step in equation (2.28) one can compute theb jk. As a third step

the correlation matrix is determined by:

ρ jk =
m∑

i=1

b ji bki. (2.29)

In the fourth step, this correlation matrix is compared to the original matrix with

the help of a penalty function:

χ2 =
n∑

j=1

m∑
k=1

(
ρoriginal

jk −
m∑

i=1

b ji bki

)2

. (2.30)

24 Another possibility is the so-called Principle-Component-Analysis. See [Fri04], p. 148f. The
problem of all possible factor reduction techniques is that they have, especially when reducing
to a very small number of factors, a heavy impact on the correlation matrix changing thereby
the evolution of the term-structure of interest rates and option prices.

25 See [Reb02], p. 259.
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This penalty function can then be minimized by iterating steps 2-4 with non-linear

optimization techniques.

2.4 Deriving the Drift

For pricing other non plain-vanilla options one has to resort to Monte Carlo tech-

niques, where all forward rates are rolled out simultaneously. When deriving

Black’s formula for a caplet on the forward rateLi(t) the zero bondP(t,Ti+1) was

used as a numeraire to discount the payoffs of the caplet. With this numeraire in

the connected probability measure, the so-called forward or terminal measure, the

evolution of the interest rateLi(t) over time is drift-free and hence a martingale.

For different forward rates, however, one needs different numeraires for cancel-

ing out the drift. To price derivatives depending on more forward rates one needs

these forward rates in one single measure. Therefore, for all (or at least for all but

one) forward rates the measure has to be changed and the drift of each forward

rate has to be determined.

A systematic way of changing drifts shall be presented here. When changing

from one numeraire to another this formula can be used, sometimes referred to as

a ”change-of-numeraire toolkit”:26

µU
X = µS

X−
[
X,

S
U

]
t

(2.31)

where

µU
X ,µS

X = the percentage drift terms ofX under the measure associated

to the numerairesU andS,

X = the process for which the drift shall be determined

26 See [BM01], p. 28-32.
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and

[X,Y]t = the quadratic covariance between the two Ito diffusionsX

andY, notated in the so called ”Vaillant brackets” where

[X,Y]t = σX(t)σY(t)ρXY(t).27

The spot measure, i.e. the measure with a discretely rebalanced bank account

Bd(t) = P(t,Tβ(t)−1 +δ)
β(t)−1∏

k=0

(1+δLk(Tk)) (2.32)

as numeraire, is usually used to simulate the development of forward rates with

Monte Carlo.

Therefore, one sets:

X = Li(t),

S = P(t,Ti +δ),

U = Bd(t),

β(t) = m, if Tm−1 < t < Tm

resulting in:

µd
i (t) = µBd(t)

Li
(t) = µi

i (t)−
[
Li(t),

P(t,Ti +δ)
Bd(t)

]
t
. (2.33)

As P(t,Ti+1) is the numeraire of the associated measure forLi(t), this leads to

µi
i = 0 and:

P(t,Ti +δ) = P(t,Tβ(t)−1 +δ)
i∏

j=β(t)

1
1+δL j(t)

. (2.34)

27 See [Reb02], p. 182.
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Inserting equations (2.34) and (2.32) in (2.33) one gets:28

µd
i (t) = −

Li(t),

∏i
j=β(t)

1
1+δL j (t)∏β(t)−1

k=0 (1+δLk(Tk))


t

=
i∑

j=β(t)

[
Li(t),1+δL j(t)

]
t +

β(t)−1∑
k=0

[Li(t),1+δLk(Tk)]t

=
i∑

j=β(t)

δL j(t)
1+δL j(t)

[
Li(t),L j(t)

]
t +

β(t)−1∑
k=0

δLk(t)
1+δLk(t)

=0︷ ︸︸ ︷
[Li(t),Lk(Tk)]t

= σi(t)
i∑

j=β(t)

δL j(t)ρi, j(t)σ j(t)
1+δL j(t)

. (2.35)

Hence, the dynamics of a forward rate under the spot measure is given by:29

dLi(t)
Li(t)

= σi(t)
i∑

j=β(t)

δL j(t)ρi, j(t)σ j(t)
1+δL j(t)

dt +σi(t)dzi . (2.36)

With the same technique the process of one forward rate can also be expressed in

any other measure, e.g. the terminal measure of another forward rate.30

Having calibrated the yield curve to the underlying FRAs and swaps, the volatility

to the caplets and the correlation matrix to the swaptions or to historical data, one

can implement Monte Carlo simulations to evolve the forward rates over time for

pricing more exotic derivatives.

28 The Vaillant brackets have the following properties:
[X,YZ] = [X,Y]+ [X,Z] and[X,Y] =−

[
X, 1

Y

]
.

29 See [BM01], p. 203.
30 See [Mei04], p. 14f.
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2.5 Monte Carlo Simulation

The LIBOR market model is Markovian only w. r. t. the full dimensional

process, i.e. the forward rateLi(t + δ) is a function of all forward rates

(L1(t),L2(t), ...,Ln(t)). Therefore, one has to price options with Monte Carlo sim-

ulations, the usual ”tool of last resort”.

These Monte Carlo methods consist of iterating the modeled process, pricing the

derivative on this path (PVi) and determining the price of a derivative as the av-

erage of all paths. Due to the law of large numbers this converges to the correct

price. The estimatePVest and its standard deviations(PVest) are given by:31

PVest =
1
n

n∑
i=1

PVi ,

s(PVest) =

√√√√ 1
n−1

n∑
i=1

(PVi −PVest)
2.

This leads to:

PVest∼ N

(
PV,

s2(PVest)
n

)
. (2.37)

There are two shortcomings of valuing derivatives with Monte Carlo simulations.

First, the convergence is rather slow, i.e. even with 10,000 pathes the pricing error

can be more than 10 basis points. Second, when valuing the same derivative

under the same market conditions (yield curve, volatility) different prices can be

computed, i.e. valuations are not repeatable if one does not use the same random

number generator with the same seed. Due to these two reasons Monte Carlo

techniques are generally avoided although for path dependent derivatives they are

straightforward to implement.

For using Monte Carlo techniques efficiently the step sizes have to be discretized.

This can be done by an Euler scheme applied to the logarithm of the forward rate

31 See [Jac02], p. 20.
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as shown for the one-factor case:32

ln[Li(t +∆ t)] = ln[Li(t)]+
(

µi(t)−
1
2

σi(t)
)

∆ t +σi(t)∆zi (2.38)

with

∆zi = xi

√
∆ t, (2.39)

xi = aN(0,1) distributed random number.

For ∆ t → 0 this is the exact solution, but in applications in practice due to time

constraints∆ t is usually chosen to be equivalent to the tenorδ of the forward rate

that shall be simulated. This does not cause any problems with volatility but with

the drift µi(t) because it is dependent upon the actual level of forward rates that

are not computed between the step sizes. One possible mechanism reducing this

problem is the so-called ”predictor-corrector” approximation.33 The real drift is

approximated by the average of the drift at the beginning and at the end of the step.

As the drift at the end of the step is dependent upon the forward rates at that time

it cannot be computed exactly. It is approximated applying an Euler step by using

the initial drift to determine the forward rates at the end of the step.

Since calculating the drift term takes most of the time, a possibility for speeding

up this simulation of the forward rates significantly is an approximation where

not the forward rates themselves but some other variables from which you can

compute the forward rates are evolved over time.34 With an appropriate choice of

these variables they are drift-free under the terminal measure of the last forward

rate that is rolled out. The only difficulty is that the volatility of each forward rate

is state-dependent. Caplet and swaption prices, however, can still be approximated

efficiently from these variables and volatilities.

32 See [Fri04], p. 77-80.
33 See [Reb02], p. 123-131.
34 See [Mey03], p. 170-177.
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2.6 Differences to Spot and Forward Rate Models

The LIBOR market model was deviated in 1997 from the HJM framework. Due

to its success and very special characteristics it is usually seen as distinct from the

original HJM framework. Its main differences to this framework are:35

1. It is the only model for the evolution of the term structure of interest rates

that embraces Black’s formulæ for caps or swaptions.

2. Different from most models with a lognormal distribution of interest rates

the forward rates do not explode, i.e. go to infinity, in this discretized setting.

3. The market model is easily extendable to a larger number of forward rates.

4. When calibrating the LIBOR market model traders have a large number of

degrees of freedom. This facilitates efficient methods for calibrating and

testing market data.

After this introduction to the basics of the LIBOR market model, in the next chap-

ter the problems with the volatility smile will be discussed.

35 See [Mei04], p. 37-43.
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The Volatility Smile

When deriving Black’s formula for caplets in Section2.2.1one assumed the exact

lognormal distribution of the forward rates. With this assumption for all strike

levels the same volatilityσi can be used. When computing the implied Black

volatilities of market prices with equation (2.8), however, one almost always gets

for every strike – keeping the other parameters fixed – a different volatility. Fur-

thermore, when determining the implied distribution from market prices, this dis-

tribution is not very close to the lognormal distribution. These observations clearly

contradict the underlying conditions to derive Black’s formula.

Usually, these findings are summarized by plotting the implied volatility as a func-

tion of the strike (̂σi(K)). The result is the so-called ”volatility smile”. To account

for the fact that this smile does not have its minimum for ATM options one also

uses the expression ”volatility skew”.

Models that will be presented in the following chapters try to fit smiles existing

in the market in very different ways. Especially models with only one parameter

are often not able to reproduce all features of the market implied volatility smile.

For the rest of the thesis I will use the expression ”symmetric volatility smile” for

the case a model only is able to generate volatility smiles with the minimum for

ATM options and the expression ”volatility smirk” for the case a model implies the

minimum volatility for K → 0 or K → ∞. Finally, the expression ”smile surface”

25
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depicts the surface spanned by the volatility smiles of caplets and/or swaptions

with different maturities and/or tenors.

For depicting these volatility smiles it is preferable to express these graphs as a

function of the standardized moneynessM instead of the strikeK sinceM accounts

for different expiries and volatilities:

M =
ln
[

K
Li(0)

]
σ̂i(Li(0))

√
Ti

. (3.1)

Due to the assumed lognormal distribution (andσ̂i(K) being the volatility of the

logarithm of the forward rateLi(t)) the logarithm ln
[

K
Li(0)

]
rather than the ratio

K−Li(0)
Li(0) suggested in [Tom95] is chosen.

Another advantage of this way of presenting moneyness is the fact that – as will

be seen later in this thesis – some local volatility models, jump processes with

a lognormal distribution of the jump size and a mean of 0, stochastic volatility

processes and uncertain volatility models lead to a totally symmetric volatility

smile w. r. t. the moneyness M, i.e. for the implied volatilityσ̂ as a function ofM:

σ̂(M) = σ̂(−M).

3.1 Reasons for the Smile

Generally, there exist two possible concepts for explaining the volatility smile:

1. The underlying dynamics of the forward rates are different from a lognormal

distribution of the forward rates with deterministic and only time-dependent

volatilities.

2. The underlying dynamics of the forward rates are well enough described by

the assumptions in Black’s model but additional effects influence the price

of options.



CHAPTER 3. THE VOLATILITY SMILE 27

The first concept immediately leads to changing the proposed dynamics of the

forward rates from (2.2). There exist several possibilities for doing so derived

from some very strong assumptions in Black’s model:

1. Having a lognormal distribution the volatility of the logarithm of the for-

ward rate is independent of the level of the forward rate. This leads to the

volatility of the forward rate being proportional to the level of the forward

rate.

2. The volatility in Black’s model is assumed to be deterministic.

3. In Black’s model one assumes a continuous development of the underlying.

With weakening one or more of these assumptions one can change the dynamics

of the forward rates immediately leading to a volatility smile.

The second concept does not lead to a rejection of the proposed dynamics in

Black’s model but tries to explain why market prices of caplets and swaptions

do not imply a lognormal distribution but different dynamics. One possible rea-

son for that is supply and demand of caplets with different strikes. For example

in the stock market especially out of the money puts are a logical crash protection.

Since investors are stocks – at least on average – long, the demand for out of the

money puts is bigger than for other options. Investment banks trying to benefit

from that fact supply these puts hedging themselves. However, due to transaction

costs – even if market participants were certain about the lognormal dynamics of

the underlying stock – investors would be charged a premium for those puts lead-

ing, when using these market prices for calculating the implied volatilities, to a

volatility smile. Similarly, for interest rate derivatives the different level of supply

and demand of options with different strikes can cause a volatility smile.

Another possible reason for volatility smiles are estimation biases as shown in

[Hen03]. Starting from the fact that both the market price of an option and the

other input parameters except the strike are typically contaminated by measure-

ment errors, tick sizes, bid-ask spreads and non-synchronous observations the

author shows that computing the implied volatility out of these data is very error-

prone leading to extremely wide confidence intervals for options in or out of the
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money. The further away from ATM options are the wider these confidence inter-

vals are as there small price differences already lead to big volatility differences.1

The bias that leads to higher implied volatilities in or out of the money than for

options at the money comes from arbitrage conditions. As prices that violate

arbitrage restrictions are not quoted and usually the lower absence-of-arbitrage

bound is violated, quoted prices and, therefore, implied volatilities have an up-

wards bias.2 This bias exists even if the distribution would be really lognormal.

Certainly both concepts have an influence on option prices. The scope of this

thesis will be to determine what forward rate processes would imply option prices

as observed in the market.

3.2 Sample Data

The market data has been supplied by Dresdner Kleinwort Wasserstein for US-$

ande as of August 6th, 2003. The data consists of the yield curve and swaption

data in the form of a so called ”volatility cube” for different expiries, tenors and

strikes.

From the existing ”volatility cube” (expiry× tenor× strike) missing data points

are interpolated with cubic spline methods. As differences between the grid points

in expiries, tenors and strikes are reasonably small, only a little loss of accuracy

results, especially considering bid-ask spreads of 2 up to 4 kappas (= volatility

points).

Usually in the markets there is a huge gap between caplet volatilities and swap-

tions volatilities. Since explaining this difference is beyond the scope of this thesis

the forward tenorδ is set to one year and available market data for swaptions for

different expiries and tenors are used as ifδ = 1. The used data in this thesis there-

fore has more the characteristics of possible market data rather than real market

data.
1 See [Hen03], p. 4.
2 See [Hen03], p. 19-22.
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Figure 3.1: Contour lines of the caplet volatility surface fore and US-$.

When comparing the caplet volatility surfaces of the two currencies in Figure3.1

one can see huge differences in the level and the shape of the volatility smile. In

thee market the volatility smiles for caplets – as can be seen in Figure3.2 –

are quite pronounced even for very long expiries. In the US-$ market, however,

volatilities are much higher for short expiries but flatten out for longer expiries

quite rapidly. FigureB.1 on pageXIII shows that for some expiries the minimum

implied volatility is for caplets with the highest moneyness.

Since the volatility skews in thee market are more demanding for a model to

replicate than the volatility smirks at US-$, during the text part of this thesis the

graphs presented are (until otherwise stated) fore data while US-$ graphs are

deferred due to space reasons to AppendixB.

For swaptions close to expiry with different tenors the volatility smile flattens out

quite quickly in both markets (see Figures3.3andB.2).
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Figure 3.2: Caplet volatility smiles for different expiries.

Finally, a comparison between the implied distributions of a future forward rate

and of a flat volatility smile is given in Figure3.4.3

In the following chapters the focus of this thesis will be on testing the available

models to evaluate if they are capable of fitting the entire volatility surface at

all rather than testing how good the actual fit to a single volatility smile is. The

reason for this aim is the fact that having two or more free parameters with most

models it is not a problem to fit a single volatility smile but when pricing exotic

options, e.g. Bermudan swaptions, their value depends on numerous forward rates,

volatilities and their joint evolution over time. The difference between the later

proposed models will be more in this joint evolution as the same caplet pricing

formula can imply – depending on the underlying model – very different joint

dynamics of the forward rates. This issue will be discussed deeper in Chapter 8.

3 See also AppendixA.1.
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Figure 3.3: Swaption volatility smiles for 1 year expiry and different tenors.

3.3 Requirements for a Good Model

When trying to find a tractable interest rate model that fits market data best, several

aspects have to be considered:

1. For fast calibration efficient formulæ for caplets and swaptions should be

available.

2. The model shall be used to price all possible interest rate derivatives. There-

fore, besides efficient4 formulæ for plain-vanilla options one also needs a

way to simulate the evolution of the term structure of interest rates. These

simulations can be done by different methods with the Monte Carlo tech-

nique being the most flexible considering correlations.

3. The model shall allow to price options with all possible expiries, tenors and

strikes simultaneously without the need for re-calibration.

4. For many applications like the pricing of exotic options the exact replication

of the hedging instruments like ATM caplets and swaptions is essential.

4 That can be analytic, numeric or even very good approximative formulæ.
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While this holds true for all interest rate models, additional requirements for the

smile modeling are:

1. The parameters used for fitting the volatility smile should be meaningful

and stable. Their number has to be carefully chosen to ensure both a good

fit to the volatility smiles in the market and to avoid overfitting.

2. The simultaneous pricing of all derivatives mentioned in point 3 of the gen-

eral requirements is essential as some models – as can be seen in the fol-

lowing chapters – can only fit one single (= for a chosen expiry-tenor pair)

volatility smile at a time.

3. The volatility smile implied by the model should be self-similar, i.e. inde-

pendent of the future level of interest rates the volatility smile at future times

shall have a similar shape.

Certainly, one will not be able to find a model that fulfills all these requirements

100%, but these are the different aims when trying to find a good model. For a

benchmark model the actual speed of calibration is not that important.
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3.4 Calibration Techniques

There are different ways to measure the calibration quality of different models and

their closed form solutions to actual market data. In this thesis, until otherwise

stated, due to comparability the methodology is the same for all models. The fit

is measured by the least squares method, i.e. one tries to minimize the sum of the

squares of the differences between market and model prices. Unlike other papers

about these models, the price differences as opposed to the volatility differences

are chosen due to three reasons:

1. The volatility differences for ATM options are more important than for other

options. Instead of using different weights for different strikes the price

differences are chosen as the vega has maximum size at the money.

2. The calibration is faster. While this is not an issue for all models, for those

models where complex computations – especially numerical integrations –

are involved this can speed up the calibration process significantly as an

additional step with Newton iterations can be avoided.

3. The price errors are the errors that really determine the success of a model

in real trading. Therefore, it is important that the loss function when cali-

brating a model is the same as when evaluating the model.5

Other possibilities might be to fit as close as possible the PDF or CDF that is

implied by market prices. Especially with the PDF, however, a good fit to this

distribution might result in model prices that are totally different.

To ensure consistent calibration criteria the models are usually calibrated through-

out the thesis at options with the following set of standardized moneynesses:

{M j} = {0,±0.25,±0.5,±0.75,±1,±1.5,±2}. (3.2)

5 See [CJ02], p. 19f.



CHAPTER 3. THE VOLATILITY SMILE 34

3.5 Overview over Different Basic Models

After collecting the different requirements for the models, three assumptions of

the underlying Black model can be weakened to generate a better fit to the market

implied distribution of interest rates.6

1. The diffusion part of the evolution of interest rates is no longer assumed to

be lognormal. The basic idea is to assume a normal or square-root distribu-

tion of forward rates but more general extensions can also be implemented.

All these extensions have in common that they can be written as the volatil-

ity of the logarithm of the forward rate being not only dependent upon the

time but also upon the level of the forward rate. These models are also

called local volatility models and will be presented in Chapter 4.

2. Another assumption that heavily contradicts market observations is deter-

ministic volatility. Non-deterministic volatility can then be modeled again

with a Brownian motion (uncorrelated or correlated with the evolution of for-

ward rates), with jump processes or with a jump to one of several possible

deterministic volatility scenarios (= uncertain volatility models). Chapter 5

will discuss uncertain volatility models and Chapter 6 will give an overview

of stochastic volatility models.

3. In the markets prices are fixed with the distance of at least one second. Con-

tinuous or discrete stochastic processes with a underlying lognormal distri-

bution are not consistent with the distribution of interest changes for this

minimum step size. Therefore, jump processes, one possible way to deal

with this and also with the observation of unusual big movements in the

level of interest rates due to new information usually occurring over night,

are discussed in Chapter 7.

6 The assumption of a Brownian motion for the forward rate process can be weakened, too. For
instance more general Levy processes or other distributions can substitute the Brownian motion.
As these models are far more than an extension to Black’s formulæ or the LIBOR market model
they are not further discussed in this thesis. For an overview over the applications of Levy
processes in finance, see [BNMR01].
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An overview of these models and a kind of graphical table of contents is given in

Figure3.5.

These four different possible basic models and their advantages and shortcomings

shall be discussed at length in the next part. To improve the comparability between

the different models the same structure of discussion is applied to all models. This

structure can be divided into three up to five steps:

1. Rate Evolution:

The model is specified by the evolution of the forward or swap rate.

2. Pricing Formula:

For efficient calibration of the model analytic or numeric solutions for caplet

or swaption prices have to be available.

3. Calibration Quality w. r. t. a Fixed Maturity:

In this step the quality of calibration to market data for each caplet or matu-

rity separately is assessed.

4. Term Structure Evolution:

For pricing all possible interest rate derivatives in a single model simulta-

neously the joint evolution of all forward rates over time is needed usually

deteriorating the fit of each single volatility smile.

5. Calibration Quality w. r. t. the Full Term Structure Evolution:

The quality of the calibration to the complete market data is the final step in

presenting a model.

The steps four and five are left out for example when results in step three already

show how poor the fit to the volatility smile of a single expiries already is.

An additional sixth step, the discussion of how each model is able to produce a

self-similar volatility smile, is deferred to Section8.1.
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Figure 3.5: Model Overview



Part II

Basic Models

37



Chapter 4

Local Volatility Models

Having defined the LIBOR market model and set up the desired features of an

extended model, the four different possible basic models have already been briefly

introduced at the end of the previous part. In the chapters of Part II they will be

presented and tested. Even if none of those models alone will be able to improve

the LIBOR market model such that it fits the whole term structure of volatility

smiles, they are essential ”building blocks” for generating more comprehensive

and advanced models.

As a first approach for fitting a single caplet or swaption smile, the underlying as-

sumption for Black’s formulæ of lognormally distributed interest rates with state-

independent volatilities of the logarithm of the forward rates is given up. This

leads in the terminal measure to the

General Forward Rate Evolution: q

dLi(t)
Li(t)

= σi (t;Li(t))dzi (4.1)

with σi (t;Li(t)) still being a deterministic function but not only time-dependent

but also dependent upon the level of the forward rate. y

The articles by [Dup94] and [DK94] showed that under the assumption of having

a complete volatility surface for all strikes and all expiries there exists exactly

38
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one diffusion process that leads to the market implied distributions of the forward

rates.1 Dupire could furthermore derive an exact solution for computing this local

volatility function from market prices. However, since there are not all caplet

prices for every expiry and every strike available and those quoted prices would be

too noisy for computing exact local volatility functions, one usually parameterizes

these functions.

In the following sections different parametrizations forσi (t;Li(t)) shall be pre-

sented, starting with very basic models like displaced diffusion (DD) or constant

elasticity of variance (CEV) and leading to a more advanced model.

4.1 Displaced Diffusion (DD)

At the displaced diffusion approach first presented in [Rub83] one no longer as-

sumes the lognormal distribution of the forward rates but of the variables

Xi(t) = Li(t)+αi (4.2)

with Xi(t) evolving under its associated terminal measure according to:

dXi(t)
Xi(t)

= σi,αi(t)dzi .

This has the side effect that exactly the same simulation mechanism for thisXi(t)
can be applied as has been in the basic model for the forward rateLi(t).

Re-substitutingXi(t) with Li(t)+αi leads to the process of the forward rate:

d(Li(t)+αi)
Li(t)+αi

=
dLi(t)

Li(t)+αi
= σi,αi(t)dzi . (4.3)

Therefore, in the notation of the general forward rate evolution proposed at the

1 See [Gat03], p. 6-12.
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beginning of the chapter one can express the

Forward Rate Evolution: q

dLi(t)
Li(t)

= σi,DD (t;Li(t))dzi (4.4)

with

σi,DD (t;Li(t)) =
Li(t)+αi

Li(t)
σi,αi(t). (4.5)

y

The lognormal distribution ofXi(t) can be used straightforward to find an exact

and especially easy solution for pricing caplets. This certainly is one of the main

reasons for the success of this model. The payoff of the caplet in timeTi+1 equals:

Payoff(Caplet)Ti+1 = NPδ [Li(Ti)−K]+ = NPδ [Xi(Ti)− (K +αi)]
+ .

Hence, whileαi >−K one can easily determine the

Caplet Pricing Formula: q

Caplet(0,Ti ,δ,NP,K,σi,αi ;αi) = NPδP(0,Ti+1)Bl
(
K +αi ,Li(0)+αi ,σi,αi

√
Ti
)

(4.6)

where

σi,αi =

√∫ Ti
0 σ2

i,αi
(u)du

Ti
.

y

The implied Black volatility (̂σi(K)) can be calculated numerically by matching

these prices:

Bl
(
K,Li(0), σ̂i(K)

√
Ti
)

= Bl
(
K +αi ,Li(0)+αi ,σi,αi

√
Ti
)
.
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Figure 4.1: Comparison of implied volatility smiles of the forward rate L1(0) =
1% for differentα1 with the same ATM implied volatilitŷσ1(0) = 40%.

These implied Black volatilities as a function of the diffusion displacementαi and

the moneynessM are compared in Figure4.1. There it can be seen clearly that for

αi → ∞ arbitrary steep volatility smiles cannot be simulated.

SinceXi(t) is lognormally distributed this variable can take values from(0,∞) or

from (−∞,0). This leads to:

Li(t) ∈ (−αi ,∞) if Li(0) <−αi ,

Li(t) ∈ (−∞,−αi) if Li(0) >−αi .

That means thatαi > 0 or αi < −Li(0) imply a positive probability for interest

rates becoming negative. When calibrating this model to market data usually a

positive value forαi provides the best fit. This unrealistic behavior is the biggest

drawback of the displaced diffusion approach.

Calibration Quality w. r. t. a Fixed Maturity

When calibrating the displaced diffusion approach to caplet volatility smiles one

can realize in Figure4.2 two drawbacks of this model. First, the forward rate

dependent parameterαi alone is not sufficient for providing a good fit to the whole
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Figure 4.2: The fit across moneynesses to the market implied caplet volatilities
with the displaced diffusion model for different expiries.α1 = 6.6%, α2 = 13.4%,
α5 = 13.9%andα20 = 768%.

volatility smile as this parameter leads to an almost straight line for the volatility

smile. Second, the calibration results are very unstable since a set of moneynesses

different from (3.2) would imply different weights for the in, at and out of the

money parts of the volatility for the calibration procedure and therefore lead to

different parametersαi .

4.2 Constant Elasticity of Variance (CEV)

Another very basic model that can generate volatility smirks for caplets is the CEV

model. For the LIBOR market model it was developed in [AA97] building on the

model in [CR76] for equity derivatives.

In this model the forward rateLi(t) evolves in the terminal measure according to:

dLi(t) = [Li(t)]
γi σi,γi dzi (4.7)
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with 0≤ γi ≤ 1.

The lognormal (γi = 1), the square-root (γi = 1
2) and the normal (γi = 0) distribu-

tion are special cases of this model.

For presenting the local volatility function more clearly a different notation of the

Forward Rate Evolution: q

dLi(t)
Li(t)

= σi,CEV(t;Li(t))dzi (4.8)

with

σi,CEV(t;Li(t)) = [Li(t)]
γi−1σi,γi (4.9)

is preferable. y

At the first sight this CEV model seems more appealing than the previously dis-

cussed DD model, as it prohibits interest rates from becoming negative (forγi > 0).

However, for 0< γi < 1 there is a positive probability of the forward rateLi(t) at-

taining 0.2 For γi ≥ 1
2 this is an absorbing barrier of the stochastic differential

equation. As has been shown in [BS96], however, the process does not have a

unique solution for 0< γi < 1
2. To ensure a well-behaving process the absorbing

boundary condition at 0 is added. Therefore for all 0< γi < 1 there is a positive

probability ofLi(t) reaching the ”graveyard state” 0. This is a disadvantage of this

model, but certainly easier to neglect than possible negative interest rates in the

DD model.

The simulation of the evolution of the forward rates in a discretized timeframe is

unlike in the basic LIBOR market model or in the displaced diffusion extension

no longer exact, that means small time steps have to be used for simulating the

forward rates. However, even with extremely small time steps a naive implemen-

tation of this process can lead to negative interest rates (and in the following step

to an error when trying to computeLi(t)γi ).

2 See [AA97], p. 8f, 34f.
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For example in the case of the square-root process discretized with the Euler

scheme:

Li(t +∆t) = Li(t)+
√

Li(t)σi,1/2∆zi (4.10)

this problem can be solved by using
√
|Li(t)| instead of

√
Li(t), but this ”mirror-

ing” of the process is not exact. A further improvement of the accuracy of the

process can be obtained with the Milstein scheme instead of the Euler scheme:3

Li(t +∆t) = Li(t)+
√

Li(t)σi,1/2∆zi +
1
4

σ2
i,1/2

(
(∆zi)2−∆t

)
= Li(t)+

√
Li(t)σi,1/2xi

√
∆t +

1
4

σ2
i,1/2

(
x2

i −1
)

∆t

with xi being aN(0,1) distributed random variable.

In this model one can use for allγ ∈ (0,1) an exact

Caplet Pricing Formula: q

Caplet(0,Ti ,δ,NP,K,σi ;γi)

= NPδ P(0,Ti+1)
(
Li(0)

[
1−χ2(a,b+2,c)

]
−Kχ2(c,b,a)

)
(4.11)

where

a =
K2(1−γi)

(1− γi)2σ2
i Ti

, b =
1

1− γi
, c =

Li(0)2(1−γi)

(1− γi)2σ2
i Ti

.

y

According to [Din89] for the χ2 distribution there exists a Second Order Wiener

Germ approximation:4

χ2(x,ν,ξ) ∼=


Φ(
√

S) s> 1
1
2 s= 1

Φ(−
√

S) s< 1

(4.12)

3 See [Fri04], p. 79f.
4 See [PR00], p. 3f.
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where

s =

√
1+4xµ/ν−1

2µ
,

S = ν(s−1)2
(

1
2s

+µ− h(1−s)
s

)
− ln

[
1
s
− 2

s
h(1−s)
1+2µs

]
+

2
ν

B(s),

h(y) =
1
y

[(
1
y
−1

)
ln[1−y]+1

]
− 1

2

with

µ =
ξ
ν
,

B(s) = − 3(1+4µs)
2(1+2µs)2 +

5(1+3µs)2

3(1+2µs)3 +
2(1+3µs)

(s−1)(1+2µs)2

+
3η

(s−1)2(1+2µs)
− (1+2h(η))η2

2(s−1)2(1+2µs)
,

η =
1+2µs−2h(1−s)−s−2µs2

1+2µs−2h(1−s)
.

Possible volatility smiles from this model are presented in Figure4.3. There it

can be seen that similar to the Figure4.1 for the DD model only volatility smirks

can be generated and that there is a limit for the steepness of the volatility smile

created.

The absorption of the forward rate process in 0 is empirically questionable but

even more might have undesirable effects on the pricing of exotic options.5 To

avoid this problem the limited CEV (= LCEV) model has been introduced. The

positive probability of reaching 0 is avoided by introducingε which is a small

positive fixed number and choosing the local volatility function as:6

σi,LCEV(t;Li(t)) = [max{ε,Li(t)}]γi−1σi,γi . (4.13)

This leads to the fact that the caplet pricing formula in equation (4.11) is no longer

exactly valid but can still be used as an approximation in the calibration process.

5 See [BM01], p. 276.
6 See [AA97], p. 14.
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Figure 4.3: Comparison of implied volatility smiles of the forward rate L1(0) =
1% for differentγ1 with the same ATM implied volatilitŷσ1(0) = 40%.

Calibration Quality w. r. t. a Fixed Maturity

When calibrating this CEV model to market data one can see the same drawbacks

of the model as for the DD model. First, the parameterγi is not sufficient for

providing a good fit for market data. Second, the calibration is very dependent

upon the set of moneynesses the model is calibrated to.

4.3 Equivalence of DD and CEV

In the two previous sections the calibration results for the DD and CEV model

have been presented. Obviously, both models have similar calibration properties.

In fact, as has been shown in [Mar99], these two models are almost equivalent.

Setting in equation (4.2)

αi =
Li(0)(1−βi)

βi
(4.14)
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Figure 4.4: The fit across moneynesses to the market implied caplet volatilities
with the constant elasticity of variance model for different expiries.γ1 = 0.31,
γ2 = 0.18, γ5 = 0.20andγ20 = 0.03.

and inserting equation (4.14) in (4.3) gives:

dLi(t) =
[
Li(t)+

Li(0)(1−βi)
βi

]
σi,αi(t)dzi

= [βiLi(t)+(1−βi)Li(0)]
σi,αi(t)

βi
dzi . (4.15)

Hence, one can write for the displaced diffusion model an alternative

Forward Rate Evolution: q

dLi(t)
Li(t)

= σi,DD(t;Li(t))dzi (4.16)

with

σi,DD(t;Li(t)) =
[

βi +(1−βi)
Li(0)
Li(t)

]
σi,βi

. (4.17)

y

Using this notation, forβi = 1 the forward rates are exactly lognormally dis-
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Figure 4.5: Implied caplet volatilities for different values ofβ1 (DD) andγ1 (CEV)
with the same ATM volatilitŷσ1(0) = 10%.

tributed, forβi = 1
2 they almost follow the square-root process and forβi = 0

they are normally distributed. As can be seen in Figure4.5, settingγi = βi leads

to very similar distributions and volatility skews for the DD and the CEV model.

Since forβi = γi = 0 andβi = γi = 1 the two models are exactly equivalent, the

small implied volatility differences are biggest for values between 0 and 1.7

This alternative notation withβi has some advantages over the original notation

with αi . First, the normal distribution can be expressed exactly, not only approxi-

mated forαi →∞. Second, while in (4.15) βi is usually chosen to beβi ∈ [0,1] this

equation can also be used for larger domains ofβi . Negative values ofβi might

be especially desirable. It has to be noted that for negative values ofβi a stateL̂i

exists where:

βi L̂i +(1−βi)Li(0) = 0.

This state has the unrealistic behavior of being a fix point, i.e. a forward rate with

7 See [Reb02], p. 356-359.
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the actual valuêLi =
(

1− 1
βi

)
Li(0) cannot leave this state. However, as this state

is not attainable it is sufficient to ensureβi is a sufficiently small number.8 Third,

the volatilityσi,βi
has the same magnitude independent of the chosenβi . The only

disadvantage is that the exact lognormal rolling out of the forward rate is no longer

possible.

Comparing the CEV and the DD model, the CEV model lends itself more to an

intuitive (and exact) interpretation regarding the normal, square-root and lognor-

mal distribution it embraces. Furthermore, interest rates cannot get negative. The

problems with the absorbing barrier at 0 and the better tractability of the DD

model usually lead to the preference for evolving the forward rates over time with

a displacement. Independent of the choice of the model as the biggest drawback

remains the inability of both models to fit an existing volatility smile as these two

basic models are only able to generate volatility smirks.

4.4 General Properties

The class of local volatility models is very flexible. The volatilityσi(t;Li(t)) can

be parametrized in different ways, for example:9

σi(t;Li(t)) = 1− Li(t)
ui

(4.18)

with ui > 0. In this model 0 is the lower andui is the upper boundary for the

forward rate. Both boundaries as has been shown in [Ing97] are unattainable.

Generally, to avoid negative interest rates one has to assure the condition

Li(t)σi(t;Li(t)) = 0 for Li(t)→ 0 (4.19)

is fulfilled.10

8 This effect is an exact consequence of the domain (−αi ,∞) in the first definition of the dis-
placed diffusion model. See also [Pit03b], p. 5.

9 For an overview see [Zuh02], p. 6-11.
10 See [AA02], p. 163.
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Other specifications forσi(t;Li(t)) enable local volatility models even not only to

generate volatility smirks but also volatility smiles. With an increasing number of

parameters one is able to fit the market implied volatility smile better and better.

Especially in lattice methods, e.g. Markov-Functional models11, this way of smile

modeling is widely used.

The main problem of local volatility models is that the generated smile will be non-

stationary, i.e. the smile would not move when the interest rate moves. Therefore,

such a model might be able to fit a certain volatility smile extremely well but

might fail in providing a good estimate of future re-hedging costs. This issue will

be discussed further in Part III.

4.5 Mixture of Lognormals

Another very different local volatility model was presented in [BM00a]. In this

approach the evolution of interest rates does not follow a single lognormal distri-

bution but a mixture ofN lognormal densities with volatilitiesσi, j(t) and positive

weightspi, j under the condition
∑N

j=1 pi, j = 1.

These assumptions lead in the terminal measure to the

Forward Rate Evolution:12 q

dLi(t)
Li(t)

= σi,MoL(t;Li(t))dzi (4.20)

with

σi,MoL(t;Li(t)) =

√√√√√√√
∑N

j=1 pi, j
σ2

i, j (t)
σi, j

exp

{
− 1

2σ2
i, jTi

(
ln
[

Li(t)
Li(0)

]
+ 1

2σ2
i, jTi

)2
}

∑N
j=1 pi, j

1
σi, j

exp

{
− 1

2σ2
i, jTi

(
ln
[

Li(t)
Li(0)

]
+ 1

2σ2
i, jTi

)2
}
(4.21)

11 See [HKP00].
12 See [BM01], p. 277-280.
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where

σi, j =

√∫ Ti
0 σ2

i, j(u)du

Ti
.

y

For these dynamics one can write this easily computable

Caplet Pricing Formula: q

Caplet
(
0,Ti ,δ,NP,K,−→σ i ;

−→p i
)

= NPδP(0,Ti+1)
N∑

j=1

pi, j Bl
(
K,Li(0),σi, j

√
Ti
)
.

(4.22)

y

The implied volatilitiesσ̂i(M) for the moneynessM as defined in (3.1) are approx-

imated via:

σ̂i(M) = σ̂i(0)

1+
M 2

2

N∑
j=1

pi, j

[
σ̂i(0)
σi, j

e
Ti
8 (σ̂2

i (0)−σ2
i, j)−1

]+O
(
M 4) (4.23)

where the implied volatility forM = 0 is given explicitly:

σ̂i(0) =
2√
Ti

Φ−1

 N∑
j=1

p jΦ
(

σi, j
√

Ti

2

) . (4.24)

The border cases are given by:13

lim
M→±∞

σ̂i(M) = max{σi,1, ...,σi,N}. (4.25)

Calibration Quality w. r. t. a Fixed Maturity

When calibrating this model usually three different volatilities are sufficient. For

pi, j = 1
3 andσi,2 = σ̂i(0) the other two volatilities can be quoted with a single

13 See [Gat01], p. 3.
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Figure 4.6: The fit across moneynesses to the market implied caplet volatilities
with the mixture of lognormals model for different expiries.θ1 = 57%, θ2 = 45%,
θ5 = 36%andθ20 = 19%.

parameterθi as the most important implied volatility is the ATM-volatilitŷσi(0).
To retain this volatility one can compute for a chosenσi,1 = θi σi,2 using (4.24):

σi,3 =
2√
Ti

Φ−1
(

2Φ
(

σi,2
√

Ti

2

)
−Φ

(
θi σi,2

√
Ti

2

))
. (4.26)

The further generated Black implied volatilities can be calculated with equation

(4.23). This procedure is especially noteworthy since it enables to separate the

steps of first calibrating the ATM-volatilities with the plain-vanilla caplets and

swaptions and then building on that calibrating the different smiles. When com-

paring the quality of the fit to a single volatility smile with other models, however,

the calibration should not be carried out in this way as the result might clearly

penalize this model as it would not have been calibrated to minimize the loss

function computed as described in Section3.4.

Calibrating this model with the one free parameterθi to market data leads to ex-

actly symmetric smiles and hence is not able to fit market data having a volatility

skew as can be seen in Figure4.6and even more clearly in FigureB.5.
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This drawback of the basic mixture of lognormals model led to an extension that

has been proposed in [BM00b]. Combining the ”mixture of lognormals”-approach

with another local volatility model, the displaced diffusion technique, provides a

better fit to caplet volatilities as it enables the model to have the minimum implied

volatility at a strike different from ATM and thereby generating the usual volatility

skew in the market.14

This leads in the terminal measure to a shifted (compared to (4.20))

Forward Rate Evolution: q

dLi(t)
Li(t)

= σi,MoL,DD(t;Li(t))dzi (4.27)

where

σi,Mol,DD(t;Li(t)) =
Li(t)+αi

Li(t)
σi,MoL(t;Li(t)+αi). (4.28)

y

The resulting

Caplet Pricing Formula: q

Caplet
(
0,Ti ,δ,NP,K,−→σi ;

−→p i ,αi
)

= NPδP(0,T +δ)
N∑

j=1

pi, j Bl
(
K +αi ,Li(0)+αi ,σi, j

√
Ti
)
. (4.29)

for the extension is therefore a blend of the basic ”mixture of lognormals”-model

and the displaced diffusion formula. y

For a formula for the implied Black volatilitŷσi(M), see [BM01], p. 281.

14 See [BM01], p. 282.
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Figure 4.7: The fit across moneynesses to the market implied caplet volatilities
with the extended mixture of lognormals model for different expiries.β1 = 35%,
σ̃1,1 = 18%, σ̃1,2 = 41%, β2 = 27%, σ̃2,1 = 12%, σ̃2,2 = 37%, β5 = 31%, σ̃5,1 =
7%, σ̃5,2 = 26%, β20 = 0.4%, σ̃20,1 = 2%andσ̃20,2 = 17%.

Calibration Quality w. r. t. a Fixed Maturity

For calibrating this model only two lognormal densities were chosen. For clearer

quotation all parameters are given level-adjusted via:

βi =
Li(0)

Li(0)+αi
,

σ̃i, j = σi, j
Li(0)+αi

Li(0)
.

The fit both toe (Figure4.7) and US-$ (FigureB.6) caplet volatility smiles is

extremely better than with the previous models since this extended mixture of

lognormals model can generate smiles with the minimum implied volatility at

almost every reasonable moneyness.
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4.6 Comparison of the Different Local Volatility

Models

In this chapter different local volatility models have been introduced. The very

basic displaced diffusion and constant elasticity of variance approaches have only

one free parameter and hence are not very flexible regarding the generated volatil-

ity smiles. However, especially the DD model due to its extremely good tractabil-

ity considering both mathematical and simulation properties is a candidate for

enhancing other models.

A first example is the mixture of lognormals model that can in the basic version

only generate symmetric volatility smiles. Combing it with displaced diffusion

leads to a local volatility model that is able to fit market implied volatilities very

well while having an easy Black-based caplet formula and a straightforward sim-

ulation mechanism.

All possible local volatility models share the drawback of a non-stationary volatil-

ity smile. That is when interest rates move the smile does not move. Therefore,

the models are not able to produce self-similar smiles, i.e. future volatility smiles

do not look similar to the current volatility smile independent of the future level of

interest rates. This drawback while being inevitable when valuing derivatives in

a one-dimensional lattice is avoidable in Monte Carlo simulations. Hence, other

extensions of the LIBOR market model should offer more realistic market dynam-

ics.



Chapter 5

Uncertain Volatility Models

While in the previous chapter local volatility (i.e. deterministic volatility) models

have been discussed, in this and the following chapter non-deterministic volatility

models shall be presented. The assumption of the local volatility models has been

that the volatility at a certain time in future is a function of the level of the forward

rate at that time. When assessing historical market data, however, this exact depen-

dency cannot be observed. The volatility seems to fluctuate quite independently

making future volatility non-deterministic when rolling out forward rates in the

model. Generally, there are two possible ways to model this fluctuation. The eas-

iest approach is to assume that volatility of today will jump shortly after today to

one of several possible scenarios (= volatility levels). The advanced approach of

volatility having its own stochastic process will be discussed in the next chapter.

Uncertain volatility models were presented in [Gat01] and [BMR03] suggesting

in the terminal measure the following

Forward Rate Evolution: q

dLi(t)
Li(t)

=

{
σi dzi t ∈ [0,ε]
σi(t) dzi t > ε

(5.1)

with σi(t) being a discrete random variable, known fort = ε, independent of the

Wiener process dz, that is drawn at timeε. The volatility σi(t) is drawn out of a

56
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finite number of possible volatility scenarios:

(t 7→ σi(t)) =


(t 7→ σi,1(t)) with probability pi,1

(t 7→ σi,2(t)) with probability pi,2
...

...

(t 7→ σi,N(t)) with probability pi,N

wherepi, j is strictly positive with
∑N

j=1 pi, j = 1. y

The resulting process leads to a mixture of lognormal densities and therefore to

the

Caplet Pricing Formula: q

Caplet
(
0,Ti ,δ,NP,K,−→σ i ;

−→p i
)

= NPδP(0,Ti+1)
N∑

j=1

pi, j Bl
(
K,Li(0),σi, j

√
Ti
)
.

(5.2)

with

σi, j =

√∫ Ti
0 σ2

i, j(u)du

Ti

whereσi, j(t) is set toσi for t < ε. y

Since this pricing formula is the same pricing formula as presented in Section4.5

the same properties for implied volatilities as shown in equations (4.23) to (4.25)

are valid.

Calibration Quality w. r. t. a Fixed Maturity

Due to the exact equality of pricing simple exotic derivatives as in the local volatil-

ity model the fit to caplets in both markets is the same as already shown in Fig-

ures4.6 andB.5. To improve this fit one could again mix this model with the

displaced diffusion approach as has been done in (4.29) to obtain a good fit to

market data as shown in Figures4.7andB.6.
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In spite of these equalities, however, there are a two big differences between those

two models with the exact same pricing formula for caplets:1

• Exotic option prices can in the uncertain volatility model just be calculated

as a mixture of prices for only time-dependent volatilities while in the local

volatility model always numerics are needed to price more complex deriva-

tives.

• The proposed dynamics for the forward rate is different. In the local volatil-

ity model it will be dependent upon the level of the forward rate while in the

uncertain volatility model the future will be independent of this level. This

difference will be discussed at length in Chapter8.

1 See [BMR03], p. 5.



Chapter 6

Stochastic Volatility Models

After the very basic uncertain volatility model in this chapter stochastic volatil-

ity models shall be presented. At the beginning models for equity options are

introduced, after that two very basic models are discussed leading to an advanced

model that also can incorporate the skew in stochastic volatility models.

6.1 General Characteristics and Problems

For modeling a continuous movement of the volatility again – as for the stock

price or the forward rate – an Ito diffusion can be used. Several stochastic volatility

models with different process for the volatility/variance have been proposed e.g. in

[HW87], [Hes93] and [SZ98]. The problem there is to choose an appropriate

process the volatility or variance should follow. This can hardly be determined

as volatility is not directly observable in the market and has to be computed by

time series analysis (= historical volatility) or market prices of options (= implied

volatility). Unfortunately, these two ways of extracting volatilities from market

data almost always leads to very different values for each stock, index or forward

rate. While it has been found that different models with stochastic volatility and

59
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correlation perform equally well for most options,1 mathematical properties are

also very important to ensure correct pricing of all options in the market.2

The importance of the stochastic volatility is most obvious when assessing the

hedging activities and margins of the traders. In deterministic volatility models

option prices are computed putting a probability of zero to volatilities different

from the calibrated one. Therefore, traders have to shift the volatilities manually

to calculate the risk of changing volatilities and to determine the correct hedge for

that. Since this hedge is only correct in a static sense traders tend to avoid or to

charge for options where this risk is not in their favor.3

Besides this Ito diffusion another possibility of modeling volatilities that change

their level again and again in future are jumps of the volatility level.4 Compared to

an Ito diffusion as driving process for the volatility the main drawback is reduced

tractability and less intuitive parameters. As these Ito diffusions – as will be shown

in the following sections – are already producing an acceptable fit to smiles in the

market this line of modeling shall not be pursued further in this thesis.

6.2 Andersen, Andreasen (2002)

There have been many approaches for pricing derivatives in a stochastic volatility

context. The work in [Hes93] was a milestone as for the first time one did not

have to use approximations to solve the partial differential equations with finite

difference schemes or to use other inefficient methods but could compute an ex-

act solution derived via Fourier transformation. Building on this original model

and further work in [ABR01] a model for forward and swap rates with an exact

solution for caplets and swaptions was presented in [AA02].5

1 See [BS99], p. 22f.
2 See also [AP04].
3 See [Reb02], p. 370.
4 See [Nai93], p. 1972.
5 In this section only the stochastic volatility part of the model suggested in [AA02] is discussed.

Combined models will be presented in Chapter9.
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In the respective swap rate measure one can give the

Swap Rate Evolution: q

dSr,s(t) = Sr,s(t)σr,s

√
V(t)dzr,s (6.1)

with

dV(t) = κ(V(0)−V(t))dt + ε
√

V(t)dw (6.2)

where

dzr,s =
m∑

k=1

σr,s,k

σr,s
dz(k),

σ2
r,s =

m∑
k=1

σ2
r,s,k,

σr,s,k = the time-constant volatility of the logarithm of

the swap rateSr,s(t) coming from factork,

dw = the Brownian increment for the variance pro-

cess and independent from dz,

κ = the so-called reversion speed withκ ∈ [0;2),

ε = the so-called volatility of volatility.
y

When simulating a forward rate over time with Monte Carlo techniques in the

basic model, jumps from one reset date to the next are sufficient when using the

appropriate corrections.6 Special care has to be taken, however, when applying

these discretization techniques for models with stochastic volatility as at the end

of the discretization interval one not only has to account for changed forward rates

but also for changed volatility levels (that had been piece-wise constant at the

basic LIBOR market model). Since very often – like in this model – the stochastic

volatility process is not lognormally or normally distributed, usually smaller steps

for both the forward rates and the variance are chosen to ensure high accuracy of

the simulation.
6 See Chapter2.5and [Reb02], p. 123-131.
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For the above model one can derive the exact

Swaption Pricing Formula:7 q

Swaption(0,Tr ,Ts,NP,K,σr,s;κ,ε)

= NPδ
s−1∑
i=r

P(0,Ti+1) f (Sr,s(0),Tr ,K,σr,s;κ,ε) (6.3)

where the following inverse Fourier integral has to be computed:8

f (Sr,s(0),Tr ,K,σr,s;κ,ε) = Sr,s(0)− K
2π

∫ ∞

−∞

e( 1
2−iω) ln[Sr,s(0)/K]

ω2 + 1
4

H(0,ω)dω

= Sr,s(0)−
Sr,s(0)

2π

∫ ∞

−∞

cosω
√

e

ω2 + 1
4

H(0,ω)dω (6.4)

with i =
√
−1.

The function

H(0,ω) = eA(0,ω)+B(0,ω)V(0) (6.5)

can be computed asA andB are the solutions to differential equations:

dA
dt

= −κV(0)B, (6.6)

dB
dt

=
1
2

σ2
r,s

(
ω2 +

1
4

)
+κB− 1

2
ε2B2. (6.7)

Equation (6.7) corrects an error in the original article ([AA02], p. 165).

The final conditions are given as:

A(Tr ,ω) = 0, B(Tr ,ω) = 0.

Closed form solutions exist for time-constantσr,s that can be iteratively used for

piece-wise constantσr,s(t) as shown in AppendixA.3. y

7 See [AA02], p. 164f.
8 See [Lew00], p. 54, 59, 330f.
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The performance and stability of computing equation (6.4) can be increased by

splitting the value of the integral into the Black price (ε = 0) and to the model

induced difference:

f (Sr,s(0),Tr ,K,σr,s;κ,ε)

= Bl(K,Sr,s(0),v)−
Sr,s(0)

2π

∫ ∞

−∞

cosω
√

e

ω2 + 1
4

(
H(0,ω)−e−(ω2+ 1

4)v2/2
)

dω (6.8)

with

v2 =
∫ Tr

0
σ2

r,sV(0)du = σ2
r,sV(0)Tr .

A technique for efficiently performing this numerical integration is presented in

AppendixA.2.

Calibration Quality w. r. t. a Fixed Maturity

When calibrating this model special care has to be taken considering the parame-

tersκ andε. These two parameters determine the model implied volatility smile.

Since the effect of a change of one of these parameters has only a slight impact

on the shape of the smile and can also be compensated by a change of the other

parameter for every single caplet smile there exists manyκ-ε-pairs that almost gen-

erate the same volatility smile. Therefore, and due to the reason that there is only

one stochastic volatility process that has to be valid for all caplets and swaptions

theκ-ε-pair is chosen which simultaneously fits all regarded options best.

In the original model there is even an additional free parameter, the so-called

reversion level, instead ofV(0) that also influences the volatility smile. To avoid

overfitting this parameter is set in all stochastic volatility models in this thesis to

the actual level of the volatility processV(0).

As can be seen in Figures6.1 andB.7 the stochastic volatility model can only

generate symmetric volatility smiles providing an insufficient fit to real market

data.
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Figure 6.1: The fit across moneynesses to the market implied caplet volatili-
ties with Andersen/Andreasen’s stochastic volatility model for different expiries.
σ1,2 = 31%, σ2,3 = 27%, σ5,6 = 20%, σ20,21 = 13%, κ = 4%andε = 100%.

In order to generate volatility skews with the stochastic volatility model one can

introduce a correlation between the processes of the variance and of the forward

rates (Section6.4), combine it with jump processes and constant elasticity of vari-

ance (Section9.1) or combine it with displaced diffusion (Section9.2).

6.3 Joshi, Rebonato (2001)

Another very basic stochastic volatility model presented in [JR01] shall be dis-

cussed only briefly as no closed form solutions for caplets or swaptions exist. In

this model the authors build on the term structure of volatility defined in (2.11)

where these four parametersa, b, c andd instead of the general level of volatility

as in the previous model are assumed to be stochastic following their own process

with individual volatility, reversion speed and reversion level.
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These characteristics leads to the following

Forward Rate Evolution: q

dLi(t)
Li(t)

= σi(t)dzi (6.9)

where

σi(t) = [a(t)+b(t)(Ti − t)]e−c(t)(Ti−t) +d(t),

da(t) = κa(a0−a(t))dt +σadza,

db(t) = κb(b0−b(t))dt +σbdzb,

dln[c(t)] = κc(ln[c0]− ln[c(t)])dt +σcdzc,

dln[d(t)] = κd(ln[d0]− ln[d(t)])dt +σd dzd.

The Brownian increments of these four additional processes are uncorrelated both

among each other and with the Brownian motion driving the forward rate.y

With the starting valuea(0), the reversion speedκa, the reversion levela0 and the

volatility σa (respective forb, c andd) there are altogether 16 free parameters that

can be calibrated to fit the market prices best. As this number is certainly abundant

the first step to reduce this number is usually to set the reversion levels equal

to the starting values (e.g.a0 = a(0)). For increasing stability of the calibrated

parameters, usually only factord is kept volatile what deteriorates the fit to market

implied volatility skews only slightly but also reduces the model to a similar but

less tractable version of the Andersen/Andreasen’s model.9 Independent of how

many and which parameters are free to calibrate, due to the uncorrelated Brownian

increments this model can only produce symmetric volatility smiles.

Due to the lack of closed form solutions for caplets and swaptions the calibration

procedure has to be carried out numerically. While this is certainly less accurate

and has higher computational costs it can be done quite efficiently by:

1. Simulating volatility paths (around 64 sample paths are sufficient),10

9 See [JR01], p. 33.
10 See [JR01], p. 18.
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2. Integrating these paths numerically for each expiry,

3. Calculating the caplet prices as an average of the prices for each path,

4. Determining the sum of the absolute or squared differences between market

and model prices,

5. Repeating steps 1-4 to calibrate the free parameters by minimizing the sum

calculated in step 4.

6.4 Wu, Zhang (2002)

The main drawback of the two previously discussed models is their inability to

fit a volatility skew. One possibility to model this skew is by assuming a corre-

lation between the driving processes of interest rates and volatility. While there

seem to be logical reasons for assuming this correlation between the underlying

process and its volatility in the equity world11 this fact is rather controversial in

the interest rate world. For instance empirically it was shown in [CS01] that ”the

correlations between short-dated forward rates and their volatilities are indistin-

guishable from 0”.12 However, the ability to fit market data without having to mix

a stochastic volatility model with one of the other basic models outweighs these

concerns.

Since for correlated processes a change of measure has influence on both pro-

cesses, it is preferable to start in the spot measure to ease a simultaneous simula-

tion of all forward rates later on. This leads in the spot measure to the following

dynamics for the forward rates and the variance:

dLi(t)
Li(t)

= µi(t)V(t)dt +σi(t)
√

V(t)dzi , (6.10)

dV(t) = κ(V(0)−V(t))dt + ε
√

V(t)dw (6.11)

where the correlation between the two Brownian increments is denoted byρi,V(t).

11 See [Mei03], p. 34.
12 See [JLZ02], p. 8.
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Changing to the forward measure results in the

Forward Rate Evolution: q

dLi(t)
Li(t)

= σi(t)
√

V(t)dzi (6.12)

where the variance evolves like

dV(t) = [κV(0)− (κ+ εξi(t))V(t)]dt + ε
√

V(t)dw (6.13)

with

ξi(t) =
i∑

k=1

δLk(t)ρk,V(t)σk(t)
1+δLk(t)

.

y

To retain analytic tractability the forward rates inξi(t) are frozen at time 0:

ξi(t) ≈
i∑

k=1

δLk(0)ρk,V(t)σk(t)
1+δLk(0)

. (6.14)

Substituting

ξ̃i(t) = 1+
ε
κ

ξi(t)

leads to:

dV(t) = κ
[
V(0)− ξ̃i(t)V(t)

]
+ ε
√

V(t)dw. (6.15)

For this model one can then write the

Caplet Pricing Formula: q

Caplet(0,Ti ,δ,NP,K,σi ;κ,ε,ρi,V) = NPδP(0,Ti+1)(Li(0)Π1−K Π2) (6.16)
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where

Π1 =
1
2

+
1
π

∫ ∞

0

Im
{
e−iu ln[K/Li (0)]ΨTi (1+iu)

}
u

du, (6.17)

Π2 =
1
2

+
1
π

∫ ∞

0

Im
{
e−iu ln[K/Li (0)]ΨTi (iu)

}
u

du (6.18)

with

Im{z} = the imaginary part of the complex numberz,

ΨTi(z) = eA(Ti ,z)+B(Ti ,z)V(0). (6.19)

A andB follow the differential equations forτ being the time to expiry:

dA
dτ

= κV(0)B,

dB
dτ

=
1
2

ε2B2 +(ρi,V εσi z−κξ̃i)B+
1
2

σ2
i (z

2−z)

with the initial conditions:

A(0,z) = 0, B(0,z) = 0.

Following AppendixA.3 one gets for piece-wise constant coefficients:

A(τ,z) = A(τ j ,z)+
κV(0)

ε2

{
(a+d)(τ− τ j)−2ln

[
1−g jed(τ−τ j )

1−g j

]}
,

B(τ,z) = B(τ j ,z)+

(
a+d− ε2B(τ j ,z)

)(
1−ed(τ−τ j )

)
ε2
(
1−g jed(τ−τ j )

)
where

a = κξ̃i −ρi,V εσi z,

d =
√

a2−σ2
i ε2(z2−z)
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and

g j =
a+d− ε2B(τ j ,z)
a−d− ε2B(τ j ,z)

.

y

Furthermore, using (2.18) one can determine an approximative

Swaption Pricing Formula: q

Swaption(0,Tr ,Ts,NP,K,σr,s;κ,ε,ρr,s,V) = NPδ
s∑

i=r+1

P(0,Ti)(Sr,s(0)Π1−KΠ2)

(6.20)

where

Π1 =
1
2

+
1
π

∫ ∞

0

Im
{
e−iu ln[K/Sr,s(0)]ΨTr (1+iu)

}
u

du, (6.21)

Π2 =
1
2

+
1
π

∫ ∞

0

Im
{
e−iu ln[K/Sr,s(0)]ΨTr (iu)

}
u

du. (6.22)

The coefficients used for solving equation (6.19) are then substituted by:13

ξ̃r,s(t) = 1+
ε
κ

s−1∑
i=r

ωi(0)ξi(t),

σr,s(t) =
∑s−1

i=r ωi(0)Li(0)σi(t)
Sr,s(0)

,

ρr,s(t) =
∑s−1

i=r ωi(0)Li(0)σi(t)ρi(t)
Sr,s(0)σr,s(t)

with ωi(0) is given in equation (2.19) andωi(0) in (2.22). y

Additionally, it has to be noted that in a stochastic volatility model with correla-

tion the market is not complete anymore since risk-neutral valuation is not possi-

ble.14 For hedging an option a money market account and the underlying stock

or forward rate are no longer sufficient but a second option is needed that already

13 See [WZ02], p. 12-14.
14 See [Reb99], p. 88.
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implies the so-called market-price of risk.15 For the special case where the corre-

lation is perfect (ρ = ±1), this second option is not needed as this model then is

reduced to local-volatility model that has been described in Chapter4.

Calibration Quality w. r. t. a Fixed Maturity

Since in this model the closed form solution is valid for piece-wise constant param-

eters for the volatilityσi(t) and the correlationρi,V(t) a set of time-homogeneous

parameters is straightforward to calibrate to. Therefore, the discussion of the cali-

bration quality for a single volatility smile is deferred to the tests of the calibration

quality w. r. t. the full term structure evolution.

Term Structure Evolution

When simulating the forward rates simultaneously the correlation between the

variance and the forward rates has to be taken into consideration, too. As usually

the number of Brownian factorsm is smaller than the number of forward rates

n in a simulation the parametersρ1,V , ρ2,V , . . . , ρn,V can not be rebuilt exactly.

Similar to the factor reduction for the basic model these correlation coefficients

are reduced to a smaller number of factors. The process can then be simulated as

described for the basic stochastic volatility model.

Calibration Quality w. r. t. the Full Term Structure Evolution

When calibrating this stochastic volatility model one has again to take special care

of the parametersκ andε. These parameters have to be identical for all different

expiries. As the parametersσi andρi,V can be used in the caplet pricing formula

as time-homogeneous parameters, the Figures6.2 andB.8 were simultaneously

calibrated. The results for thee-data are a very close fit to market data. For

US-$ this fit is not sufficient since the skew seems to strong to be fitted by the

correlation.
15 This can be seen clearly when deriving the partial differential equation for Heston’s model in

AppendixA.4.
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Figure 6.2: The fit across moneynesses to the market implied caplet volatilities
with Wu/Zhang’s stochastic volatility model with correlation for different expiries.
σ1 = 33%, ρ1,V = −35%, σ2 = 28%, ρ2,V = −41%, σ3 = 22%, ρ3,V = −41%,
σ4 = 18%, ρ4,V =−37%, κ = 19%andε = 160%.

6.5 Comparison of the Different Stochastic Volatil-

ity Models

Two main models have been introduced in this chapter. The basic model by Ander-

sen/Andreasen without correlation is only able to produce a symmetric volatility

smile. Besides mixing this approach with other basic models – as will be done in

the third part of this thesis – one can also generate a volatility skew by correlating

the volatility and the forward rate driving Brownian motions. Due to the market

implied lower volatility for caplets out of the money this correlation is negative.

The time-homogeneous fit to market data in this model is at least for thee-data

very good.

The problems with Wu/Zhang’s model, however, are a relatively time-consuming

caplet pricing formula and also a very time-consuming and inefficient simulation

of the forward rates as in this case the volatility paths cannot be simulated sepa-

rately or be used for more than one forward rate path, but have to be computed
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simultaneously with the forward rates. Two further minor disadvantages of this

stochastic volatility model with correlation are the non 100%-exact caplet pricing

formula and the fact that the calibratedρi,V(t) can not be simulated in a factor

reduced model exactly.



Chapter 7

Models with Jump Processes

After testing in the previous chapters three different basic classes of models that

modify volatility directly, models with jump processes as the last basic approach

shall be presented in this chapter. With introducing jump processes to the evolu-

tion of the forward rates the assumption of a continuous evolution of forward rates

over time is no longer retained.

First a general overview of these jump processes and reasons for their occurrence

is given. Then the basics starting with Merton’s formula are presented leading to

more and more complex models. At the end of the chapter these different models

are compared.

7.1 General Characteristics and Problems

The assumption in Black’s formula of a continuous movement of the forward rates

is not given in reality. The tick size and the time discretization of one second at

exchanges are contradicting this assumption but this influence on prices is usually

negligible. The real problems are, first, big movements of forward rates for this

minimum step sizes due to new information during the opening hours and second,

the closing times over night that lead to a jump every morning the exchange opens

due to market movements that happened on other market places all over the world.

73
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Big movements in the markets are mainly information induced. In the stock mar-

kets this information is usually a stock related announcement such as quarter earn-

ings, a new analyst report or hostile bids. For fixed income securities mainly

macroeconomic news have such a big effect on forward rates. One of the possible

sources are the government rates announced on a regular basis by the European

Central Bank (= ECB) for thee or by the Federal Reserve Bank for US-$. This

regular announcement combined with the fact that the government rates have a

big tick size with 25 basis points leads to frequent jumps in the forward rates.1

Furthermore, a study about the volatility smile in the stock option markets shows

that the kurtosis of the distribution of stock returns is significantly higher for the

overnight and weekend time where the exchange is closed than for the opening

hours.2 Since this fact can hardly be modeled by assuming a continuous move-

ment of stocks during the closing times, it additionally amplifies the idea of jump

events having an influence on interest rates when assuming that fixed income and

stock markets are similar.

7.2 Merton’s Fundament

The basic work for modeling jumps of the underlyings of financial derivatives has

been done in [Mer76] where the assumption in the Black-Scholes model of a con-

tinuous development of stock prices is alleviated. The usual movements in stock

prices are still described by a Brownian motion but for the unusual movements a

Poisson process is introduced.3

A Poisson process is an integer-valued non-decreasing stochastic process with the

parameterλ, the so-called arrival rate. This parameter denotes the expected num-

ber of events per unit time with1λ being the expected time till the next jump, the

so-called interarrival time. This interarrival time (= for instance the time between

the 2nd and the 3rd event) is exponentially distributed. Due to the independent

1 See [Muc03], p. 7f and [Man02], p. 18f.
2 Discussion by Robert Tompkins at the MathFinance Workshop 2004, Frankfurt.
3 See [Fri03], p. 3f.
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identically distributed (i.i.d.) jump times a Poisson process is memoryless, i.e. the

expected time till the next jump at a certain point of time is independent of when

the previous jump has occurred.

These Poisson distributed number of jumps per time interval can model the arrival

of an important piece of information for the underlying stock. The intensity of

these events, the so-called arrival rate, is denoted byλ, the random number of

jump events up to timeT is denoted byNT . The probability ofn jumps during a

certain period of time can then be given by:

P(NT = n) =
e−λT(λT)n

n!
. (7.1)

The usual equation from Black-Scholes for the evolution of a stock in the risk-

neutral measure:
dA(t)
A(t)

= r dt +σdz (7.2)

with

A(t) = the price of the underlying stock at timet,

r = the risk free rate,

σ = the volatility of the logarithm of the stock price

is then extended to:

dA(t)
A(t−)

= (r−λm)dt +σdz+d

(
N∑

k=1

(Jk−1)

)
(7.3)

where

A(t−) = the left side limit of the stock price at timet,

N = a Poisson process with arrival rateλ
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and

{Jk} = the sequence of independent identically distributed (i.i.d.)

non-negative random variables,

m = E(Ji −1), the expected proportional price change for one jump.

The formula of Black-Scholes for call options with maturityT:

Call(A,K,T,σ2, r) = BS(A,K,T,σ2, r) = SΦ(d1)−Ke−rT Φ(d2) (7.4)

where

d1 =
ln [A/K]+

(
r + σ2

2

)
T

σ
√

T
,

d2 = d1−σ
√

T,

σ = the annualized volatility of the logarithm of the stock

price

is accordingly extended with using equation (7.1) and the assumption that the

jump sizeJ is lognormally distributed
(
J∼ LN(a,s2)

)
:4

Call(A,K,T,σ2, r;λ,a,s) =
∞∑

n=0

e−λ′T(λ′T)n

n!
BS(A,K,T,v2

n, rn) (7.5)

where

λ′ = λ(1+m),

rn = r−λm+
nln(1+m)

T
,

v2
n = σ2 +n

s2

T
,

m = ea+s2/2−1.

4 See [Hul01], p. 630f., 646.
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7.3 Glasserman, Kou (1999)

In [GK99] the authors build on Merton’s formula for deriving a formula for caplets.

Both intensity and density of the jump process are chosen as in the previous model.

Since for deriving the formula of Black-Scholes the risk-neutral measure and for

Black’s formula the terminal measure is used, in the case of interest rates the jump

process is added to the terminal measure leading to the

Forward Rate Evolution:5 q

dLi(t)
Li(t−)

= −λi mi dt +σi(t)dzi +d

(
Ni∑

k=1

(Jk−1)

)
(7.6)

whereNi is a Poisson process with the time-constant arrival rateλi . y

For simulating this process with Monte Carlo techniques one has to discretize it

for time steps of a finite size.6 The jump process can be discretized by drawing a

first random number to determine – using the CDF obtained with equation (7.1)

– the number of jumps in this time interval (=Nδ) and according to the number

of those jumps additional random numbers that are distributed as specified in the

respective jump models (= in this case lognormally).

Due to the lognormal distribution of the diffusion and the fact that the forward

rate is multiplied with the jump sizes, the step sizes for the simulation do not have

to be increased. The level of the forward rate at timet +δ after the jumps is then

a function of the stock price before accounting for the jumps (at time(t +δ)−):

Li(t +δ) = Li((t +δ)−)
Nδ∏

k=1

Jk. (7.7)

5 See [GK99], p. 13.
6 For the discretization of the drift, see Section2.5.
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Figure 7.1: The fit across moneynesses to the market implied caplet volatilities
with Glasserman/Kou’s jump model for different expiries.σ1 = 17%, λ1 = 67%,
s1 = 33%, m1 =−10%, σ2 = 13%, λ2 = 27%, s2 = 50%, m2 =−15%, σ5 = 9%,
λ5 = 7%, s5 = 71%, m5 = −20%, σ20 = 5%, λ20 = 1%, s20 = 223%and m20 =
−62%.

Similar to Merton’s formula in (7.4) one can then give a

Caplet Pricing Formula: q

Caplet(0,Ti ,δ,NP,K,σi ;λi ,mi ,si)

= NPδP(0,Ti+1)e−λiTi

∞∑
j=0

(λiTi)
j

j!
Bl(K,L( j)

i (0),v( j)
i ) (7.8)

with

L( j)
i (0) = Li(0)e−λimiTi(1+mi) j ,

v( j)
i =

√
σ2Ti + js2

i .
y
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Calibration Quality w. r. t. a Fixed Maturity

When testing the calibration quality of this model to market data one can see in

markets with a pronounced volatility smile (e-data in Figure7.1) instead of a

volatility smirk (US-$-data in FigureB.9) a very good fit of the model implied

volatilities to market implied volatilities. Examining the calibrated parameters for

the caplet with one year expiry leads to very reasonable results: with a probability

of 49% there will be one or more jumps with an expected jump size of -10%.

While the fit to market data stays good for longer maturities the obtained parame-

ters change strongly: for a caplet with 20 years maturity with a probability of more

than 80% no jump at all will occur, but if there will be a jump event it will lead

to an average drop down of the interest rate by -62%. These parameters for the

caplet that expires in 20 years are cumbersome by itself, but combing the resulting

process with the process for a caplet with 1 year maturity would lead eventually

to a very odd forward rate curve since those jumps of different parts of the curve

are not connected at all.

Finding a forward rate process with additional parameters that can be interpreted

to have an economic meaning is certainly an advantage of the jump process, but

since these parameters are – as just shown – far away from realistic values, conse-

quentially the suggested process does not match the real market dynamics. There

are two possible improvements of this basic model. First, a different distribution

of the jump sizes should be examined and second, a time-homogeneous evolution

leading on all possible simulation paths to a smooth forward rate curve should be

found. The first will be tested in the following section, the second in the section

thereafter.

7.4 Kou (1999)

The lognormal distribution of the jump sizes proposed in [GK99] leads to a very

simple pricing formula for caplets. However, since this is the same distribution

as the underlying forward rate process it leads for longer maturities to a canceling
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out of the effects of one or more jumps. Different distributions of the jump sizes

exist with the same underlying

Forward Rate Evolution: q

dLi(t)
Li(t−)

= −λi mi dt +σi(t)dzi +d

(
Ni∑

k=1

(Jk−1)

)
. (7.9)

y

In [Kou99] the author suggests a double exponential distribution for the logarithm

of the jump size with the density:

f (ln[J] = x) =
1

2η
e−

|x−ξ|
η (7.10)

where

ξ = the mean of the distribution,

2η2 = the variance of the distribution with 0< η < 1.

This can be stated differently by drawing an exponential random variableν with

meanη and varianceη2 and calculating the jump sizeJ by:7

J =

{
eξ+ν with probability 1

2,

eξ−ν with probability 1
2.

(7.11)

Therefore, the distribution of ln[J] is symmetric inξ and can produce values for

ln[J] in the range(−∞,∞). As in the basic model by Glasserman and Kou the log-

arithm ensuresJ∈R+ and hence prohibits interest rates from jumping to negative

values.

The obtained density is similar to Student-t distributions and the main differences

to the normal distribution used in [GK99] are the high peak and heavy tail features

that should have a higher impact on the distribution of the forward rate. The

7 See [Kou99], p. 10.
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kurtosis is given by:

Kurtosis =
E
[
(X−E(X))4

]
Var(X)2 −3 (7.12)

with the central normalized momentM4 = E
[
(X−E(X))4

]
for the double expo-

nential distribution (= DE) with ξ = 0:

M4 =
∫ ∞

−∞

x4

2η
e−

|x|
η = 24η4. (7.13)

The difference between this distribution and the normal distribution can then eas-

ily be seen by:

KurtosisDE =
M4

4η4 −3 = 3,

KurtosisN = 0.

The double exponential distribution can also be seen as a substitute for the more

intuitive but less tractable Student-t distribution with 6 degrees of freedom with

the density:

f (x) =
Γ(3.5)√
6πΓ(3)

(
1+

x2

6

)−3.5

=
5
√

6
32

(
1+

x2

6

)−3.5

(7.14)

with

Γ(x) =
∫ ∞

0
tx−1e−tdt. (7.15)

After scaling this density with
√

3
2:

f (x) =
15
32

(
1+

x2

4

)−3.5

(7.16)

this distribution and the double exponential distribution have the same first five

moments and can hardly be distinguished at sample market data.8

8 See [Kou99], p. 10f.
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The high peak and heavy tail features seem appealing due to two reasons. First,

market observations show both under- and overreaction to market news, i.e. high

peaks and heavy tails. Second, as the tails in the double exponential distribution

are heavier than in the normal distribution, the effect of one jump on the volatility

smile should be stronger and in the long run the canceling out of jumps should be

slower than for the normal distribution.

The proposed dynamics lead to the

Caplet Pricing Formula:9 q

Caplet(0,Ti ,δ,NP,K,σi ;λi ,ξi ,ηi) = NPδP(0,Ti+1)e−λiTi

×

{ ∞∑
n=1

n∑
j=1

(λiTi)n

n!22n− j

(
2n− j−1

n−1

)
×

[
e

σ2
i Ti

2η2
i

K√
2π

j−1∑
k=0

(
σi
√

Ti

ηi

)k

×
(

e−
hi
ηi

(
1

(1−ηi) j−k −1

)
Hhk(c−i )+e

hi
ηi

(
1− 1

(1+ηi) j−k

)
Hhk(c+

i )
)

+Li(0)e−λiζiTi+nξi

(
1

(1−ηi) j +
1

(1+ηi) j

)
Φ(a+

i )−2KΦ(a−i )

]

+
[
Li(0)e−λiζiTi Φ(b+

i )−KΦ(b−i )
]}

(7.17)

where

a±i =
ln
[

Li(0)
K

]
± σ2

i Ti
2 −λiζiTi +nξi

σi
√

Ti
,

b±i =
ln
[

Li(0)
K

]
± σ2

i Ti
2 −λiζiTi

σi
√

Ti
,

c±i =
σi
√

Ti

ηi
± hi

σi
√

Ti
,

hi = ln [K/Li(0)]+λiζiTi +
σ2

i Ti

2
−nξi ,

ζi =
eξi

1−η2
i

−1

9 See [Kou99], p. 21, 23.
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Figure 7.2: Comparison between the normal distribution (N), the double exponen-
tial distribution (DE) and the Student-t distribution with six degrees of freedom
(Student-t) for the variable x. All distributions have a mean of 0 and a variance
of 1. N has a kurtosis of 0, DE and Student-t a kurtosis of 3.

TheHh function is defined as follows:10

Hh−1(x) = e−x2/2,

Hh0(x) =
√

2πΦ(−x),

Hhn(x) =
Hhn−2(x)−xHhn−1(x)

n
.

y

Calibration Quality w. r. t. a Fixed Maturity

The results obtained with this model (see Figures7.3andB.10) are very similar to

the basic model proposed by [GK99]. With this model due to the strong leptokur-

tic feature of its jump size distribution all diffusion volatilitiesσi are higher and

all jump arrival ratesλi are smaller than in the previous model, but still the param-

eters are unrealistic and not apt for simulating all forward rates simultaneously.

10 See [AS72], p. 299f, 691.
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Figure 7.3: The fit across moneynesses to the market implied caplet volatilities
with Kou’s jump model for different expiries.σ1 = 18%, λ1 = 65%, η1 = 22%,
ξ1 = −0.2, σ2 = 16%, λ2 = 16%, η2 = 40%, ξ2 = −0.5, σ5 = 11%, λ5 = 4%,
η5 = 60%, ξ5 =−1.0, σ20 = 5%, λ20 = 1%, η20 = 95%andξ20 =−3.5.

Different distributions of jump sizes should be found but the difficulty might be

to find an exact caplet pricing formula.

7.5 Glasserman, Merener (2001)

In the previous sections two different approaches with time-constant parameters

for the jump process have been presented. Their shortcomings are both in fitting

the smile of caplets with different maturities and in getting meaningful parameters

to produce a comprehensive model that evolves all forward rates simultaneously

over time.

A third model – clearly building on [GK99] – with time-dependent parameters has

been proposed in [GM01a] and shall be presented and tested in this section.

The first step is again a closed form solution for caplets, the most important tool

for calibrating the smile efficiently. As in this setting the parameters of the jump
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processes are not time-constant but can even be chosen time-homogeneous, this

model and the jump sizes can be calibrated by bootstrapping. The obtained pa-

rameters can then be used to model this evolution of forward rates over time for

Monte Carlo simulations. Efficient ways for doing so are presented at the end of

this section.

Starting in the respective terminal measure from a – compared to (7.6) – slightly

modified

Forward Rate Evolution: q

dLi(t)
Li(t−)

= −λi(t)mi(t)dt +σi(t)dzi +d

Ni(t)∑
k=1

(Jk−1)

 (7.18)

with

Ni(t) = a Poisson process with the time-dependent arrival rateλi(t),
y

one gets a

Caplet Pricing Formula:11 q

Caplet(0,Ti ,δ,NP,K,−→σ i ;
−→
λ i ,

−→mi ,
−→s i) = NPδP(0,Ti+1)(Li(0)Π1−K Π2)

(7.19)

with

Π1 =
1
2

+
1
π

∫ ∞

0

eB1(u) sin(B2(u)−uln[K/Li(0)])
u

du, (7.20)

Π2 =
1
2

+
1
π

∫ ∞

0

eB3(u) sin(B4(u)−uln[K/Li(0)])
u

du, (7.21)

where

B1(u) = δ
i∑

k=1

λk(0)
[
(1+mk(0))e−s2

k(0)u2/2cos(wk(0)u)−1
]

−λk(0)mk(0)−σ2
k(0)u2/2

11 See [GM01c], p. 6.
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and

B2(u) = δ
i∑

k=1

λk(0)(1+mk(0))e−s2
k(0)u2/2sin(wk(0)u)+αk(0)u+σ2

k(0)u,

B3(u) = δ
i∑

k=1

λk(0)
[
e−s2

k(0)u2/2cos(ak(0)u)−1
]
−σ2

k(0)u2/2,

B4(u) = δ
i∑

k=1

λk(0)e−s2
k(0)u2/2sin(ak(0)u)+αk(0)u

with

wk(t) = ak(t)+s2
k(t),

αk(t) = −λk(t)mk(t)−σ2
k(t)/2,

ak(t) = ln[mk(t)+1]−
s2
k(t)
2

where all time-dependentσk(t),λk(t),mk(t) andsk(t) are chosen to be totally time-

homogeneous analogous to equation (2.9) leading to:

−→σ i =


σi(0)
σi(T1)

...

σi(Ti−1)

 =


σi(0)

σi−1(0)
...

σ1(0)

 (7.22)

with respective vectors for
−→
λ i ,

−→s i and−→mi . y

With the closed form solution from (7.19) the parametersσi(0),λi(0),mi(0) and

si(0) can be obtained by bootstrapping, leading to a totally time-homogeneous be-

havior of the whole forward rate process where the forward ratesLi(t) andLi+k(t)
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are notated in their respective (drift-free) forward measure:

dLi(t)
Li(t−)

=−λi(t)mi(t)dt +σi(t)dzi +d

Ni(t)∑
k=1

(Jk−1)


= −λi+k(t +kδ)mi+k(t +kδ)dt +σi+k(t +kδ)dzi+k +d

Ni+k(t+kδ)∑
k=1

(Jk−1)


=

dLi+k(t +kδ)
Li+k ((t +kδ)−)

.

Calibration Quality w. r. t. a Fixed Maturity

Calibrating the time-homogeneous jump model of Glasserman/Merener to mar-

ket data is rather problematic since the obtained parameters are not similar, what

means – as can be seen for example at the parameters2 with the extreme volatil-

ity of jump sizes – that these parameters for longer expiries have to take extreme

values to ensure a good fit to market data as shown in Figure7.4. In spite of these

extreme values the obtained market fit is definitely worse than for time-constant

parameters as shown in Figure7.1.

An additional problem is that these parameters are calibrated in their respective

forward measure. Therefore, an appropriate procedure has to be found, so that all

parameters are valid in the same measure and ideally all these different Poisson

processes can be implemented simultaneously and efficiently.12

Term Structure Evolution

The main problem with this simulation is that when changing the measure the

Poisson process changes, too. The intensity of the jump process is different in

every other measure and there exists no measure in which all processes are still

Poisson simultaneously.13

12 Compare to Section2.4.
13 See [GM01a], p. 9.
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Figure 7.4: The fit across moneynesses to the market implied caplet volatilities
with Glasserman/Merener’s jump model for different expiries.σ1 = 17%, λ1(0) =
67%, s1(0) = 33%, m1(0) = −10%, σ2 = 11%, λ2(0) = 12%, s2(0) = 77%,
m2(0) =−24%, σ3 = 9%, λ3(0) = 3%, s3(0) = 128%, m3(0) =−38%, σ4 = 7%,
λ4(0) = 3%, s4(0) = 72%and m4(0) =−1%.

As this change of measure leads to the fact that the jump process is no longer

Poisson, the generated - more general - marked point process (MPP) has to be

simulated when evolving the interest rates over time.

A marked point process exhibits two stochastic components: a stochastic point

realization in time (= in this case influenced by the intensity of the jump process)

and a stochastic size effect (= in this case the density of the jump size distribution).

Further background on point processes can be found in [Bre81].

These MPPs are not that straightforward to implement, but they can be generated

by having a Poisson process that is thinned. The main concept of this thinning al-

gorithm is, first, to simulate a Poisson process with a sufficiently large arrival rate

λ0 and appropriate density for the jump sizes and then to determine probabilities

for accepting these jumps of the Poisson process for the MPP.

In the special case of this model one starts with havingn rates usingn marked

point processes (with the parametersσi(0), λi(0), mi(0) andsi(0) for the underly-
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ing Poisson processes in the appropriate forward measure). Due to the thinning

method it is sufficient to simulate one single Poisson process and then to thin all

n marked point processes from this. This procedure leads to a very desirable prop-

erty of the model: jumps of different forward rates occur at the same time and in

the same direction.

In the market front end forward rates have a higher tendency to jump than rates

with longer maturity. By appropriate choice of the parameters of the single jump

processes, one can achieve that the setIi(t) of marked point processes, the forward

rateLi(t) is sensitive to, equals:

Ii(t) = (i +1−β(t), i +2−β(t), . . . ,n) (7.23)

with β(t) is the index of the forward rate closest to its reset date.

With this construction, the rate that will mature next,Lβ(t)(t), is sensitive to alln

MPPs, and if some rateLi(t) jumps then all rates maturing earlier thanTi also jump.

Furthermore, if the term structure of volatilities is exactly time-homogeneous as

e.g. in equation (2.11) ”all rates follow, under their respective forward measures

and for a fixed distance to their own maturities, the same stochastic differential

equation.”14

The appropriate choice of parameters mentioned to obtain the structure described

in equation (7.23) is made if the parameters fulfill the restriction:

ln

[
si+1

si

]
− 1

2
z2

(
1

s2
i

− 1

s2
i+1

)
+z

(
ai

s2
i

− ai+1

s2
i+1

)
− 1

2

(
a2

i

s2
i

−
a2

i+1

s2
i+1

)

> ln

[
λi+1

λi

]
+max{0,z} for z∈ R (7.24)

whereλi , ai andsi are short forλi(0), ai(0) andsi(0)

This restriction can be simplified to at least partially more intuitive restrictions:

1. 0 < w < 1, i.e. the realistic assumption that forward rates jump more fre-

quently the shorter the time to maturity is,

14 See [GM01a], p. 10.



CHAPTER 7. MODELS WITH JUMP PROCESSES 90

2. 0 < y < 1, i.e. the realistic assumption that the closer the maturity date the

more influence an information event has on the forward rate,

3. y2s2
i ln
[ y

w

]
− 1

2a2
i (y

2−x2) > 0,

4. max
{

ai
y2−x
y2−1;y2s2

i ln
[ y

w

]
+ 1

2a2
i

(
(y2−x)2

y2−1 − (y2−x2)
)}

> 0,

5. max

{
y2s2

i −ai(y2−x)
y2−1 ;y2s2

i

(
ln
[ y

w

]
− ai(y2−x)−y2s2

i
y2−1

)
− 1

2a2
i (y

2−x2)

+ (ai(y2−x))2−y4s4
i

2y2−2

}
> 0

where

λi+1 = wλi ,

ai+1 = xai ,

si+1 = ysi .

When one simulates the evolution of forward rates over time, the possible jump

times of the underlying Poisson process can be determined even before simulat-

ing the evolution of the forward rates as they are not dependent upon the actual

realization of the rates.15

Therefore, the arrival rate of the jumps for the underlying Poisson process is cho-

sen to be:

λ0 = λ1(2+m1) . (7.25)

and the density of the jump:

f (y) =
f1(y)+y f1(y)

2+m1
. (7.26)

In the lognormal case of this modelfi has the density ofLN(an,s2
n) leading to

a mean of 1+ mn. The random value ofy can then be computed as shown in

AppendixA.5.

15 See [GM01b], p. 7.
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Then, the probability of a jump of the forward rate closest to maturity is given by:

pβ(t) =
1+yδLβ(t)(t)
1+δLβ(t)(t)

λ1 f1(y)
λ0 f (y)

=
1+yδLβ(t)(t)(

1+δLβ(t)(t)
)
(1+y)

(7.27)

and for the forward ratesLβ(t)+ j+1, conditional onLβ(t)+ j jumping, by:

pβ(t)+ j+1 =
1+yδLβ(t)+ j+1

1+δLβ(t)+ j+1

λ j+2 f j+2(y)
λ j+1 f j+1(y)

. (7.28)

The result of the bootstrapping were the vectors−→σ i ,
−→
λ i ,

−→mi and−→s i . In this

restricted model these values can also be used with an approximation whereTr −
t � Ts−Tr for a

Swaption Pricing Formula: q

Swaption(0,Tr ,Ts,NP,K,−→σ r,s;
−→
λ r,s,

−→mr,s,
−→s r,s)

= NPδ
s−1∑
i=r

P(0,Ti+1)(Sr,s(0)Π1−K Π2) . (7.29)

For this approximation, using the previous results, the vectors−→σ r,s,
−→
λ r,s,

−→mr,s and
−→s r,s have to be computed.

Similar to equation (2.24) the volatility of the diffusion process can be determined

by:16

σ2
r,s(t) ≈

s−1∑
i=r

s−1∑
j=r

ωi(0)ω j(0)Li(0)L j(0)σi(t)σ j(t)ρi, j(t)
S2

r,s(0)
. (7.30)

As the swap rate jumps with every forward rate resetting inTi with i = r, ...,s−1

and in this restricted model the forward rateLi(t) can only jump whenLi−1(t) is

also jumping the arrival rate for jumps of the swap rate is given by:

λr,s(t) = λr(t). (7.31)

16 See [GM01c], p. 25-27.



CHAPTER 7. MODELS WITH JUMP PROCESSES 92

The jump size and the volatility can be approximated by:

mr,s(t) =
∑s−1

i=r λi(t)ωi(0)Li(0)mi(t)

λr(t)
∑s−1

j=r ω j(0)L j(0)
, (7.32)

s2
r,s(t) = ln

[∑s−1
i=r

∑s−1
j=r ωi, j(0)λw(t)

λr (t)

(
es2

w(t)(1+mw(t))2−2mw(t)−1
)

(1+mr,s(t))2
∑s−1

i=r

∑s−1
j=r ωi, j(0)

+
1+2mr,s(t)

(1+mr,s(t))2

]
(7.33)

where

ωi, j(0) = ωi(0)ω j(0)Li(0)L j(0),

w = max{i, j}.
y

Calibration Quality w. r. t. the Full Term Structure Evolution

Glasserman/Merener’s restricted jump model enables the time-homogeneous evo-

lution with parameters that ensure a rather smooth development of the forward

rate curve. Calibration of this model shows already for the caplet with expiry in

two years an insufficient fit to the market implied volatility smile.

It can be seen at Figure7.5and the parameterss1, s2 ands3 that are decreasing as

slow as possible that the restrictionsi+1 < si is the main obstacle for a better fit to

market data. Therefore, the thinning process ensures a meaningful joint evolution

of forward rates but restricts degrees to freedom too much to enable a good fit to

real market data.
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Figure 7.5: The fit across moneynesses to the market implied caplet volatil-
ities with Glasserman/Merener’s restricted jump model for different expiries.
σ1 = 17%, λ1(0) = 67%, s1(0) = 33%, m1(0) =−10%, σ2 = 14%, λ2(0) = 27%,
s2(0) = 31%, m2(0) = −19%, σ3 = 12%, λ3(0) = 6%, s3(0) = 30%, m3(0) =
−19%, σ4 = 12%, λ4(0) = 4%, s4(0) = 20%and m4(0) =−17%.

7.6 Comparison of the Different Models with Jump

Processes

The basic model of Glasserman/Kou building on Merton’s fundament with time-

constant parameters for the density and the intensity of the jump process has been

presented first in this chapter. This model is able to fit the volatility smile of

forward rates close to maturity very good with reasonable parameters. For caplets

with longer maturities the fit is still good but parameters are getting more and

more cumbersome and unrealistic. This can only be slightly improved by a more

leptokurtic distribution of the jump sizes in Kou’s model.

Another problem of these two models are the time-constant parameters. They

lead to very different jump processes for each forward rate when it is close to

maturity. Besides that, the simultaneous simulation of the forward rates following

such different jump processes would lead to a very uneven forward rate curve. A
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model with time-dependent parameters for the jump process therefore has been

introduced at length in the previous section. However, when using this model for

calibrating one does not get a really good fit, but unrealistic parameters. When

restricting these parameters to enable a simultaneous simulation of forward rates

that leads to a realistic (i.e. smooth) forward rate curve, parameters are reasonable

(by definition) but the fit already for caplets very close to expiry is insufficient.

Therefore, jump models standing on their own fail to provide reasonable dynamics

for the evolution of forward rates but might be interesting in combination with

other previously discussed basic models.



Part III

Combined Models and Outlook

95



Chapter 8

Comparison of the Different Basic

Models

In Part II of this thesis the four classes of basic extensions of the LIBOR market

model have been introduced and several models been tested. All aspects men-

tioned in Section3.3 have been discussed for each model separately with the ex-

ception of self-similar volatility smiles since one can examine this requirement

best in a direct comparison of different models. After this little ”case study” a

tabular overview of all models and their characteristic will be given leading even-

tually to a suggestion which models should be combined to approach the goal of

a comprehensive smile model.

8.1 Self-Similar Volatility Smiles

The requirement of a smile model implying self-similar volatility smiles, i.e. for-

ward volatility smiles that are similar to the actual volatility smile, is very often

neglected when modeling the evolution of the forward rates since fitting caplet

and swaption market data is a more obvious and compelling goal. Additionally,

the future implied volatility smiles have influence on the prices of exotic options

but these options are usually not liquid enough to extract these dynamics.

96
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To clarify the effects of different model implied future volatility smiles a simpli-

fied pricing example is given. Since in all basic classes there are models that can

generate symmetric volatility smiles the exemplary ”market data” is:

L2(0) = 2%,

σ̂(0) = 20%,

σ̂(±2) = 25%

with σ̂(M) being the annualized Black implied volatility for a caplet with money-

nessM. This set of data has been chosen to enable all models to match the given

volatilities exactly.

The following four models – one for each class of basic models – are compared:

1. Mixture of Lognormals (Section 4.5),

2. Uncertain Volatility (Chapter 5),

3. Stochastic Volatility without Correlation (Section 6.2),

4. Lognormally Distributed Jumps (Section7.3).

The calibrated model parameters are given as:

• For the local volatility and the uncertain volatility model (since both

share exactly the same pricing formula):

θ = 41.5% (i.e.σ1 = 8.3%,σ2 = 20% andσ3 = 31.8%).

• For the stochastic volatility model:

κ = 10% (chosen manually),ε = 122% andσ = 22%.

• For the jump model:

λ = 20% (chosen manually),s= 38%,a =−s2

2 =−7.1% andσ = 14%.

These parameters lead to the volatility smiles shown in Figure8.1.
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Figure 8.1: Market data and implied volatility smiles for four different basic
models for a caplet expiring in two years.

Determining the model implied future volatility smile not only means to fix param-

eters but also in some cases to account for different underlying dynamics. More

explicit, the ways to compute the future model implied volatility smile in each

model are given as follows:

• For the local volatility model:

The future volatility is still determined by (4.20). Therefore, one has to

perform a simulation for timet = 1 to t = 2 for this given dynamics with

L2(0) = 2%.

• For the uncertain volatility model:

Since the time for the draw of the random variable is already over at time

t = 1, the chosen scenario and the connected volatilityσ2, j is already fixed

with the probabilityp2, j . In this case, the three scenarios occur with a prob-

ability of 1
3 each.

• For the stochastic volatility model:

To determineV(1) one has to roll out the variance level. From the dis-
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Figure 8.2: Future volatility smiles implied by the local volatility model for differ-
ent levels of the forward rate L2(1).

tribution of V(1) different possible future implied volatility smiles can be

computed with (6.5) and (6.8).

• For the model with a jump process:

Since the jump process is memoryless the future implied volatilitiesσ̂(M)
are deterministic and the caplets can be priced for the expiry in 1 year with

(7.8) with the same parameters as computed for expiry in 2 years previously.

To compare these future implied volatilities the volatility smiles are given in

Figures8.2 to 8.5. For comparability reasons the moneyness is computed with

σ = 20% independent of the model implied volatilityσ̂(0).

The only model where the future volatility smile depends upon the level of the for-

ward rate is the local volatility model. Different smiles from different levels of the

forward rateL2(1) are given in Figure8.2. There it can be seen that the volatility

smile is so-called ”sticky strike”, i.e. the minimum local volatilityσ(t;Li(t)) stays

at the same strike independent of the level of the forward rate in future.
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Figure 8.3: Set of future volatility smiles implied by the uncertain volatility model.

The other model with exactly the same pricing formula, the uncertain volatility

model, leads to flat volatility smiles. One of the possible volatility scenarios is

chosen directly after time 0. In this case each of the scenarios shown in Figure8.3

occurs with a probability of 33.3%.

The stochastic volatility model leads to a far range of possible future volatility

scenarios. In Figure8.4 possible future volatility smiles are given. Since the

process (6.2) is a martingale, the mean isV(1) = 1. The other volatility smiles are

the 25%, the 50% (= median) and the 75% quantile ofV(1).

Finally, Figure8.5depicts the future smile implied by the jump model. This smile

is independent of both the level of the forward rate and the number of jumps

having occurred in the past.

In summary, the future smile implied by the local and the uncertain volatility

model are not self-similar at all. Opposed to that the stochastic volatility model

and the jump processes lead to volatility smiles that can be observed in the mar-

kets.
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Figure 8.4: Representatives of the future implied volatility smile by the stochastic
volatility model.

These findings certainly have a strong influence on the prices of exotic derivatives

and further research should be done in this area. For example calculations how

much exotic option prices depend upon the chosen model for the evolution of the

interest rate and/or the volatility, see [BJN00], p. 851-855.

8.2 Conclusions from the Different Basic Models

After having discussed all possible aspects of these basic models from Section

4.1 to Section 8.1 in length a tabular overview of their characteristics is given in

Table 8.1. While most of the fields in this table are obvious some classifications

might also be chosen different, i.e. choosing ”true” instead of ”partially true” and

vice versa. Furthermore, due to space restrictions not all fields for every single

model have been reasoned throughout this thesis but in most cases should be ap-

parent.

The ”uncombined” model seeming best to fit market data and implying reasonable

dynamics is Wu/Zhang’s stochastic volatility model with correlation. However,
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Figure 8.5: Future volatility smile implied by the jump model.

the tractability and also the fit for example to the US-$ data shown in FigureB.8

are not totally convincing.

The combination of some models might provide further possibilities. Since both

stochastic volatility and jumps are observed in the market, this might be a very

promising approach and will be presented in Chapter 9.1 additionally including

CEV.

While this model including jumps, stochastic volatility and CEV seems like the

ideal model for fitting the market implied volatility smiles a better tractable com-

prehensive smile model might be the combination of stochastic volatility and

displaced diffusion. This DD approach can also be seen as a better tractable

way of generating correlation between the forward rates and the volatility than

Wu/Zhang’s model. This model will be presented in Chapter 9.2.
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 Chapter

 Number of 
 Free Parameters

 Exact Roll Out

 No Substeps Needed

 Self-Similar Smiles

1
2

 Volatility Skews

 Fit to Market Data
 (Single Smile)

 Time-Homogeneous

 Fit to Market Data
 (Term Structure)

 Only Positive
 Interest Rates

 Exact Pricing 
 Formula

 Symmetric Volatility
 Smiles

Table 8.1: Comparison of the basic models and their characteristics. X = true,
- = false, (X) = partially true.



Chapter 9

Combined Models

At the end of the previous chapter two combined models have been suggested for

being tested how they fit market data. Both imply reasonable joint forward rate

dynamics that are important for exotic option pricing. For a good fit both models

have to include stochastic volatility as this is the only way to generate a volatility

smile for long-term options with realistic dynamics.

In the first model this stochastic volatility will be combined with jump processes

and constant elasticity of variance. Since jumps are observed in the market and

the CEV approach prohibits interest rates from becoming negative this might be a

big step towards the ideal model for the forward rate dynamics.

The second model, the combination of stochastic volatility with the displaced dif-

fusion approach, will be more tractable, e.g. efficient ways for calibrating the

whole swaption matrix can be presented for the latter model.

Both models will be tested the same way as the basic models according to the

scheme presented at the end of Section3.5.

104
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9.1 Stochastic Volatility with Jump Processes and

CEV

Jarrow, Li and Zhao present in their paper this combined model with the following

Forward Rate Evolution:1 q

dLi(t)
Li(t−)

= −λi mi dt +
[
Li(t−)

]γi−1σi(t)
√

V(t)dzi +d

(
Ni∑

k=1

(Jk−1)

)
(9.1)

whereLi(t−) is the left side limit of the forward rate at timet and the other pa-

rameters are as given in the basic models discussed in Sections4.2 and7.3. The

evolution of the variance is given by:

dV(t) = κ(V(0)−V(t))dt + ε
√

V(t)dw (9.2)

with the parameters as described in Section6.2. y

These dynamics lead to the

Caplet Pricing Formula: q

Caplet(0,Ti ,NP,K,σi ;γi ,κ,ε,λi ,mi ,si)

= NPδP(0,Ti+1)
∞∑

j=0

e−λiTi
(λiTi) j

j!
G
(

0,L( j)
i ,V(0), j

)
(9.3)

where2

L( j)
i = Li(0)e−λimiTi(1+mi) j , (9.4)

G
(

0,L( j)
i ,V(0), j

)
= L( j)

i Φ(d1)−KΦ(d2) (9.5)

1 See [JLZ02], p. 9f.
2 See [JLZ02], p. 19.
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with

d1 =
ln[L( j)

i /K]+ 1
2Ω( j)

(
0,L( j)

i ,c
)2

Ω( j)
(

0,L( j)
i ,c

) ,

d2 = d1−Ω( j)
(

0,L( j)
i ,c

)
,

Ω( j)
(

0,L( j)
i ,c

)
=

√
Ω
(

0,L( j)
i ,c

)
+ js2

i .

For calculatingΩ an expansion can be computed:

Ω
(

0,L( j)
i ,c

)
= Ω0

(
L( j)

i

)
(cTi)

1
2 +Ω1

(
L( j)

i

)
(cTi)

3
2 +O

(
(Ti)

5
2

)
, (9.6)

Ω0

(
L( j)

i

)
=

ln
[
L( j)

i /K
]

∫ L( j)
i

K u−γi du
,

Ω1

(
L( j)

i

)
= −

Ω0

(
L( j)

i

)
(∫ L( j)

i
K u−γi du

)2 ln

[
Ω0

(
L( j)

i

)√(
L( j)

i K
)1−γi

]
.

The variancec can be approximated by:

c = c+α0ε2 +α1ε2 ln
[
L( j)

i /K
]2

+O
(
ε4) (9.7)

where3

c =
V(0)

Ti

∫ Ti

0
σ2

i (u)du,

α0 =
l1,2

(Ti)2

(
Ω21−

1
4

Ω
(

0,L( j)
i ,c

)2
Ω10

)
,

α1 =
l1,2

(Ti)2Ω
(

0,L( j)
i ,c

)−2
Ω10.

3 See [ABR01], p. 31f.
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with

Ωmn =
∂mΩ

(
0,L( j)

i ,c
)

/∂cm

∂nΩ
(

0,L( j)
i ,c

)
/∂cn

,

Ω10 =
Ω0

(
L( j)

i

)
+3cTi Ω1

(
L( j)

i

)
2cΩ0

(
L( j)

i

)
+2c2Ti Ω1

(
L( j)

i

) ,

Ω21 =
−Ω0

(
L( j)

i

)
+3cTi Ω1

(
L( j)

i

)
2cΩ0

(
L( j)

i

)
+6c2Ti Ω1

(
L( j)

i

)
and4

l1,2 =
1
2
V(0)

∫ Ti

0
p2(u)du,

p(t) =
∫ Ti

t
σ2

i (u)e−κ(u−t)du.

y

The problem of this closed form solution are the two approximations in (9.6) and

(9.7). The first expansion for computingΩ makes the formula inaccurate for bigTi .

The second expansion for computingc leads to convergence problems forε > 1,

i.e. for values that are usually obtained when calibrating to market data.5

One can improve the second expansion by increasing the order of the approxima-

tion with substituting in (9.7):

O
(
ε4) = ε4

(
β0 +β1 ln

[
L( j)

i /K
]2

+β2 ln
[
L( j)

i /K
]4
)

+O
(

ε6
)

. (9.8)

The values forβ0,β1 andβ2 are given in AppendixA.6.

For options deep in or out of the money where ln
[
L( j)

i /K
]4

tends to grow to∞ the

4 See [ABR01], p. 12.
5 See [ABR01], p. 35f.
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Figure 9.1: Comparison between the exact solution from(6.3) and the basic ex-
pansion from(9.7) (= O2) and the higher order expansion from(9.8) (= O4) for
different values ofΛ. To be able to get a better comparison of these expansions the
CEV and the jump processes are switched off.σ1 = 20%, ε = 120%andκ = 10%.

results are deteriorated. To avoid thisβ2 is substituted by

β̂2 = β2e
−Λε2 ln

[
L( j)

i /K
]2

(9.9)

whereΛ is some arbitrary small number (usually chosen between 1 and 10).

The implied volatility smiles for different expansions are shown in Figure9.1.

The problem is that different maturities and different sets of moneynesses would

imply different Λ that best approximate the exact solution. This exact solution

from Section6.2 can not be used for pricing since the expansions are needed to

incorporate jump processes and CEV for the closed form solution. Since usually

a very low reversion speedκ fits market data best, these expansions could most

probably not even be improved easily to a reasonable level since for smallκ the

approximate pricing formulæ are most inaccurate.6

6 See [ABR01], p. 17.
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Figure 9.2: The fit across moneynesses to the market implied caplet volatilities
with Jarrow/Li/Zhao’s combined model for different expiries.ε = 110%, κ = 15%,
σ1 = 19%, λ1 = 57%, m1 =−12%, s1 = 32%, γ1 = 98%, σ2 = 1.0%, λ2 = 32%,
m2 =−11%, s2 = 42%, γ2 = 18%, σ5 = 2.9%, λ5 = 10%, m1 =−17%, s1 = 41%,
γ5 = 51%, σ20 = 0.3%, λ20 = 0.9%, m20 =−53%, s20 = 171%, γ20 = 0.3%

An exact closed form solution without convergence problems could be very useful

in testing – similar to the work in [BCC97] – which of the basic models included

is most important in providing a good fit to the market implied volatility smile.

Calibration Quality w. r. t. a Fixed Maturity

This comparison was performed in [JLZ02]. The parameters obtained in their pa-

per rather show how easily a model with such a myriad of free parameters can

be overfitted. Especially at meaningful parameters like the reversion level of the

stochastic volatility process that logically should be at least at the same magni-

tude as the actual volatility this overfitting is obvious. For instance, calibrating

a reversion level of 8.4 for caplets with 7 years maturity and 0.014 for caplets

with 5 years maturity as was done in [JLZ02] can be regarded as an extremely

problematic example.
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For this reason when calibrating to market data as shown in Figure9.2the param-

eters for the stochastic volatility were set equal for all maturities. The reversion

level has been set – as always throughout this thesis – to the actual level of volatil-

ity. Extremely little loss of accuracy is obtained when doing so, but both analytic

tractability and parameter stability are improved. The results show how easily

most volatility smiles can be fitted with this model. Parameters for the jump pro-

cesses and the CEV, however, are not consistent for different expiries.

The main problem of this model remains the analytic tractability and the lack of

methods to evolve the term structure of interest rates simultaneously.

9.2 Stochastic Volatility with DD

After the non-exact caplet pricing formula in the previous model a combination

of stochastic volatility with displaced diffusion only needs slight modifications of

the closed form solution from (6.3).

This model was presented in [AA02] with the following

Swap Rate Evolution: q

dSr,s(t) = [βr,sSr,s(t)+(1−βr,s)Sr,s(0)]σr,s

√
V(t)dzr,s (9.10)

and the evolution of the variance

dV(t) = κ(V(0)−V(t))dt + ε
√

V(t)dw (9.11)

where the parameters are as given in Section6.2. y

These dynamics lead to the

Swaption Pricing Formula: q

Swaption(0,Tr ,Ts,NP,K,σr,s;βr,s,κ,ε)

= NPδ
s−1∑
i=r

P(0,Ti+1)
f (Sr,s(0),Tr ,K,σr,s;βr,s,κ,ε)

βr,s
(9.12)
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where

f (Sr,s(0),Tr ,K,σr,s;βr,s,κ,ε)

= Bl(K′,Sr,s(0),v)−
Sr,s(0)

2π

∫ ∞

−∞

cosω
√

e

ω2 + 1
4

(
H(0,ω)−e−(ω2+ 1

4)v2/2
)

dω (9.13)

with

K′ = βr,sK +(1−βr,s)Sr,s(0),

v2 = β2
r,sσ

2
r,sV(0)Tr .

To computeH(0,ω) with (6.5) one has to substitute equation (6.7) with

dB
dt

=
1
2

β2
r,sσ

2
r,s

(
ω2 +

1
4

)
+κB− 1

2
ε2B2 (9.14)

and the following calculations are as described in Section6.2. y

Calibration Quality w. r. t. a Fixed Maturity

When calibrating this model to market data again for the process of the variance

the same parameters for all different expiries are used. Fore-data this generates

an acceptable fit (Figure9.3), for US-$-data (FigureB.11) the same problem as

for other models occurs: the skew is too strong to be fit by the model. Since the

results are similar to the results of a stochastic volatility with correlation model

(Section6.4) the displaced diffusion can be regarded as a (mathematically) ”cheap”

way of modeling the correlation between volatility and the level of forward rates.

With the parametersκ andε calibrated to the caplet volatility surface one can also

fit swaptions with different tenors sufficiently in both markets (Figures9.4 and

B.12).
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Figure 9.3: The fit across moneynesses to the market implied caplet volatilities
with the stochastic volatility and displaced diffusion model for different expiries.
σ1,2 = 32%, β1,2 = 35%, σ2,3 = 28%, β2,3 = 26%, σ5,6 = 20%, β5,6 = 27%,
σ20,21 = 14%, β20,21 = 3%, ε = 121%andκ = 4%.

Term Structure Evolution

Volatility smiles could be fitted sufficiently well with this underlying model. The

missing part, however, is the connection between the time-constant parameters

βr,s andσr,s and a process for the forward rates so that these can be simulated.

This has to be done since no generalβ andσ can be found that enables a sufficient

fit to all market data.7 A way of generating these dependencies efficiently was

presented in [Pit03b].

Starting from the dynamics of the forward rate with time-dependent parameters

under the terminal measure:

dLi(t) = [βi(t)Li(t)+(1−βi(t))Li(0)]σi(t)
√

V(t)dzi (9.15)

7 See [Pit03b], p. 7f.
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Figure 9.4: The fit across moneynesses to the market implied swaption volatilities
with the stochastic volatility and displaced diffusion model for expiry in one year
and different tenors.σ1,2 = 32%, β1,2 = 35%, σ1,3 = 28%, β1,3 = 21%, σ1,6 =
22%, β1,6 = 4%, σ1,21 = 15%, β1,21 = 8%, ε = 121%andκ = 4%.

with the usual

σi(t)dzi =
m∑

k=1

σik(t)dz(k)

one can approximate the dynamics of a swap rate in the drift free measure by

dSr,s(t) = [βr,s(t)Sr,s(t)+(1−βr,s(t)Sr,s(0)]
√

V(t)
m∑

k=1

σr,s,k(t)dz(k) (9.16)

where

σr,s,k(t) =
s−1∑
i=r

qr,s,i σik(t), (9.17)

βr,s(t) =
s−1∑
i=r

pr,s,i βi(t) (9.18)
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with

qr,s,i =
Li(0)
Sr,s(0)

∂Sr,s(0)
∂Li(0)

,

∂Sr,s(0)
∂Li(0)

= ωi(0) from equation (2.22),

pr,s,i = 8

∑m
k=1σik(t)σr,s,k(t)

(s− r)
∑m

k=1σ2
r,s,k(t)

wherem is the number of factors.

With this result, the approximate volatility and skew for every swaption can be

calculated from the volatilities and skews of the forward rates. These values, how-

ever, are time-dependent as opposed to the time-constant values from calibrating

market data with formula (9.12).

The time-constant skew can be calculated via:9

βr,s =
∫ Tr

0
βr,s(t)wr,s(t)dt (9.19)

with

wr,s(t) =
v2

r,s(t)σ2
r,s(t)∫ Tr

0 v2
r,s(t)σ2

r,s(t)dt
,

v2
r,s(t) = V(0)2

∫ t

0
σ2

r,s(u)du+V(0)ε2e−κ t
∫ t

0
σ2

r,s(u)
eκu−e−κu

2κ
du.

The time-constant volatility can be calculated as the solution to:

ϕ0

(
−g′′(ζ)

g′(ζ)
σ2

r,s

)
= ϕ

(
−g′′(ζ)

g′(ζ)

)
(9.20)

8 This equation corrects an error in the original article ([Pit03b], p. 8, 24).
9 See [Pit03b], p. 11-14.
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where

ζ = V(0)
∫ Tr

0
σ2

r,s(t)dt,

g(x) =
Sr,s(0)

βr,s

(
2Φ
(

βr,s
√

x
2

)
−1

)
. (9.21)

Then one can compute:

g′′(x)
g′(x)

=
(
ln
[
g′(x)

])′
=

(
ln

[
Sr,s(0)
2
√

x
φ
(

βr,s
√

x
2

)])′
=

(
ln

[
Sr,s(0)
2
√

2xπ
e−β2

r,sx/8
])′

=

(
ln

[
Sr,s(0)
2
√

2π

]
− 1

2
ln[x]−

β2
r,sx

8

)′

= − 1
2x
−

β2
r,s

8
. (9.22)

The function

ϕ(x) = eA(0,x)−V(0)B(0,x) (9.23)

with A(t,x) andB(t,x) satisfying the differential equations

dA
dt

= −κV(0)B,

dB
dt

= −1
2

ε2B2−κB+xσ(t)

and the final conditions

A(Tr ,x) = 0, B(Tr ,x) = 0

can be solved explicitly when using equations (A.21) and (A.22) in AppendixA.3

iteratively.10

10 See [Pit03b], p. 31f.
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The functionϕ0(x) can be solved as:

ϕ0(x) = eA(0,x)−V(0)B(0,x),

B(0,x) =
2x
(
1−e−γTr

)
(κ+ γ)(1−e−γTr )+2γe−γTr

,

A(0,x) = 11 2κV(0)
ε2 ln

[
2γ

(κ+ γ)(1−e−γTr )+2γe−γTr

]
−2κV(0)

x
κ+ γ

Tr ,

γ =
√

κ2 +2ε2x.

Calibration Quality w. r. t. the Full Term Structure Evolution

Using the just derived dependencies between the forward rate parametersσi(t) and

βi(t) and the time-constant swap rate parametersσr,s andβr,s one does not have to

calibrate the forward rate parameters directly to market implied volatilities but can

divide this calibration into two steps. These dependencies are also summarized

graphically in Figure9.5.

First, the parameters of the stochastic volatility processε andκ and for each expiry-

tenor pair the parametersσr,s andβr,s are calibrated to fit market implied volatili-

ties best.

This step can be divided into two substeps:

1. Calibration of ε and κ:

As there is exactly one variance process generating the volatility smile for

all different expiries and tenors the parameters have to be the same for pric-

ing all swaptions and caplets. To determine these two parameters the im-

plied volatility smile is calibrated for different expiries and tenors simulta-

neously and theε andκ leading to the minimum combined error are chosen.

2. Calibration of βr,s and σr,s:

Using the two parameters for the stochastic volatility process the matrixes

βr,s andσr,s can be calibrated.

11 This equation corrects an error in the original article ([Pit03b], p. 32).
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(Calibration)

βi(t) σi(t)
ε κ

 (9.17) & (9.18) 

 (Calibration) 
(Step 1) 

 (9.12) βr,s(t) σr,s(t)
ε κ

(9.19) - (9.23) 

βr,s σr,s (Calibration) β*
r,s σ*

r,s

ε κ (Step 2) ε κ

Time-constant roll out
(swap rate) (9.10)
2n²+2 parameters2n²+2 parameters

(swap rate) (9.10)
Time-constant roll out

Time-dependent roll out

2n³+2 parameters

n³ parameters

Time-dependent roll out

2n²+2 parameters

(swap rate) (9.16)

(forward rate) (9.15)

σr,s(M)

Market data

Figure 9.5: The dependencies between the parameters of the forward rate and
variance processes and swaption implied volatilities for the stochastic volatility
and displaced diffusion model.

Second, the forward rate parametersσi(t) andβi(t) are calibrated to fit the just

obtained swap rate skews and volatilities as good as possible.12

The second step can be further divided into 3 to 4 substeps:

1. Calibration of σi(t):
The matrix of parametersσr,s is used to bootstrap the time-dependent for-

ward rate volatilitiesσi(t).

12 The aim of exact time-homogeneous parameters can usually not be reached while maintaining
an acceptable fit to market implied volatilities. Since this problem is always persistent when
calibrating to market data even in the pure LIBOR market model, it should not be regarded as
a problem caused by this specific model.
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2. Improving time-homogeneity ofσi(t):
Theseσi(t) are calibrated with penalty functions for being more time-

homogeneous while only slightly deteriorating the previously exact fit to

the matrixσr,s.

3. Calibration of βi(t):
The matrix of parametersβr,s is used to bootstrap the time-dependent for-

ward rate skewsβi(t). The obtained parameters are afterwards simultane-

ously calibrated to the matrix ofβr,s improving the calibration.

4. Improving time-homogeneity ofβi(t):
Theseβi(t) could be optionally calibrated with penalty functions for be-

ing more time-homogeneous. However, an approximate time-homogeneity

would lead to a heavy deterioration of the previously exact fit to the matrix

βr,s and hence is usually not carried out.

Substeps 3 to 4 can be executed after substeps 1 and 2 since these two optimization

problems are almost orthogonal.13

For better understanding this calibration procedure an example with real market

data will be given. The parameters obtained are given in TablesC.1 to C.5 in

Appendix C. Figures9.6 and 9.7 show the obtained results on page120. The

calibration will be carried out fore market data for the swaption matrix with

s5 11, i.e. for a triangle matrix with expiries up to ten years and tenors up to ten

years.

The calibration to market data leads in the first step to:14

ε = 134%, κ = 12%

and differentβr,s and σr,s for each expiry-tenor pair. The results are given in

TableC.1.
13 See [Pit03b], p. 15f.
14 This result is different from the result obtained when calibrating data for Figure9.3 since a

different set of options has been chosen to calibrate to and a wide range of differentε-κ-pairs
leads to very similar effects on the volatility smiles.
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In the second step, simple bootstrapping of time-dependent but not time-

homogeneous parametersσi(t) as substep 1 leads to the values given in TableC.2.

Further calibrating theseσi(t) with a function that additionally penalizes for non

time-homogeneous values leads in substep 2 to the values given in TableC.3.

In substep 3 finally, the skew parametersβi(t) are bootstrapped and afterwards op-

timized leading to the values in TableC.4. The values 100% and−50% have been

set as boundaries for anyβi(t) since values outside this interval are considered un-

realistic and especially for highly negativeβi(t) also mathematically cumbersome.

Both values are marked red in this table to show the problem of this bootstrapping

and how far away from time-homogeneous parameters the bootstrapped param-

eters are. It has to be noted that imposing these boundaries leads – like in the

unavoidable case of the volatility (σi(t) ≥ 0) – to the fact that the bootstrapping

cannot always exactly rebuild the matrixβr,s.

The differences between theσr,s andβr,s from step 1 andσ∗r,s andβ∗r,s from step 2

are given in TableC.5.

For the two swaptions with the highest difference in the skew (S5,6) and in the

volatility grid (S1,11) the calibrations are compared in Figures9.6and9.7. There

one can see clearly that 5.1% difference inβr,s leads to much smaller calibration

differences than a 0.7% difference inσr,s. In both cases considering that these are

the worst examples for the complete swaption matrix the fit seems sufficient.

Therefore, this model is able to fit the whole volatility surface of the swaption

matrix, has approximately time-homogeneous volatilities and can be calibrated

efficiently. The remaining problem are the skew parameters of the forward rates

βi(t) since these parameters are not remotely time-homogeneous and both borders

for possible values (−50% and 100%) are frequently touched in TableC.4. How-

ever, due to the strong effect of the stochastic volatility, future volatility smiles

are more self-similar than for other models that provide a good fit to the volatility

surface.



CHAPTER 9. COMBINED MODELS 120

15%

20%

25%

30%

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2
Moneyness

Im
pl

ie
d 

V
ol

at
ili

ty
market
σ, β
σ*, β*

Figure 9.6: Comparison between market and model implied volatilities in the
SV & DD model for a caplet with expiry in 5 years.σ and β are the best pa-
rameters obtained in step 1,σ∗ and β∗ are the parameters obtained in steps 2
where the volatility was calibrated to be more time-homogeneous and the skew
was bootstrapped.
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Figure 9.7: Comparison between market and model implied volatilities in the
SV & DD model for a swaption with expiry in one year and a tenor of 10 years.



Chapter 10

Summary

The LIBOR market model is one of the most important interest rate models re-

cently. The most demanding problem for using it successfully as a benchmark

model is the volatility smile.

The LIBOR market model is usually simulated with Monte Carlo techniques, the

most flexible implementation. Therefore, the forward process lends itself to a

myriad of different extensions. The four most important extensions, in this thesis

called ”basic models”, have been presented in Part II. While there are many ways

of fitting a market given volatility smile the class of stochastic volatility models

seems most important as these are the only models that can generate volatility

smiles for long-term options implying reasonable future forward rate dynamics.

These dynamics – as has been discussed in Chapter 8 – are cumbersome for local

and uncertain volatility models. Due to their analytic tractability and easy im-

plementation these models are, however, the most popular for pricing derivatives

including a volatility smile.

In Chapter 9 two combined models have been introduced. The first one, the com-

bination of stochastic volatility with both jump processes and constant elasticity

of variance, causes problems with the pricing formula and the time-homogeneous

behavior of the forward rates. The second model does not share these drawbacks.
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Since it combines stochastic volatility with displaced diffusion it has the shortcom-

ing of possible negative interest rates.

As this second model – due to the extensions presented in [Pit03b] – can connect

swaption implied volatilities to the forward rate parameters, it offers the possibility

of exact time-homogeneous joint forward rate dynamics. When calibrating to

market data, however, this exact time-homogeneity could only be reached for the

cost of insufficient calibration results.

Future interesting developments for smile modeling in the LIBOR market model

might be especially closed form solutions, e.g. for stochastic volatility combined

with jump processes, for jump models with a more leptokurtic distribution for the

jump size, and for more realistic distributions of the stochastic volatility process,

since the lack of exact solutions makes many interesting ways of evolving the

forward rates over time untractable or inefficient.
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Appendix A

Mathematical Methods

A.1 Determining the Implied Distribution from

Market Prices

To determine the implied distributionfLi(Ti) of the forward rateLi(Ti) at its reset

date one starts with the option priceC(K) as a function of the strike K expressed

as the expected payoff of the option in the terminal measure (P(Ti+1,Ti+1) = 1):1

C(K) = P(t,Ti+1)
∫ ∞

−∞
max{s−K,0} fLi(Ti)(s)ds. (A.1)

The first derivative is then:

∂C(K)
∂K

= P(t,Ti+1)
∫ ∞

−∞
−1s=K fLi(Ti)(s)ds (A.2)

= P(t,Ti+1)
∫ ∞

K
− fLi(Ti)(s)ds. (A.3)

The second derivative equals:

∂2C(K)
∂K2 = P(t,Ti+1) fLi(Ti)(K). (A.4)

1 See [BL78], p. 627 and [Fri04], p. 56f.

II
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As this derivative can be approximated with differences of market prices:2

∂2C(K)
∂K2 ≈ C(K +∆K)+C(K−∆K)−2C(K)

∆K2 (A.5)

one can calculate the implied distribution as:

fLi(Ti)(K) =
1

P(t,Ti+1)
C(K +∆K)+C(K−∆K)−2C(K)

∆K2 . (A.6)

For better comparison of different distributions and calculating the skew and kur-

tosis, the moneynessM =
ln

[
K

Li (t)

]
σi
√

Ti
of the forward rate can be used. Since

∫ ∞

K
fLi(Ti)(s)ds = Prob(Li(Ti) < K)

= Prob(M(Ti) < M) =
∫ ∞

M
fM(Ti)(y)dy

with

M(Ti) =
ln
[

Li(Ti)
Li(t)

]
σi
√

Ti
(A.7)

one can re-phrase (A.4) as

∂2C(K)
∂K2 = P(t,Ti+1)

fM(Ti)(M)
Kσi

√
Ti

. (A.8)

The implied distribution of the logarithm of the forward rate can then be calculated

via:

fM(Ti)(M) =
Kσi

√
Ti

P(t,Ti+1)
C(K +∆K)+C(K−∆K)−2C(K)

∆K2 . (A.9)

Since these procedures are independent of the actual model the implied distribu-

tions of market and model prices can be easily compared.

2 See [Sey00], p. 82.
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A.2 Numerical Integration with Adaptive Step Size

When numerically integrating a fixed step size is usually not efficient as there are

sections like singularities where small step sizes are important and other sections

(especially when integrating a converging function to∞) where extremely big step

sizes are sufficient. The main idea of adaptive step sizes then is to integrate

I =
∫ b

a
f (x)dx (A.10)

with two different algorithms to obtain two approximationsI1(a,b) andI2(a,b).3

If the difference between these values is smaller then a chosen tolerance level

(minimum tolerance is the machine precision), the better (i.e. the one with the

higher expected accuracy) approximation is chosen as the value of the integral.

Otherwise, one divides the integral in two parts

I =
∫ m

a
f (x)dx+

∫ b

m
f (x)dx (A.11)

with m= 1
2(a+b) and then performs their integration independently.

For computing the approximative integrals in [GG98] the authors suggest the

Simpson quadrature with

I0(a,b) = (b−a)
f (a)+4 f (m)+ f (b)

6
, (A.12)

I1(a,b) = I0(a,m)+ I0(m,b)

= (b−a)
f (a)+4 f

(
a+m

2

)
+2 f (m)+4 f

(
m+b

2

)
+ f (b)

12
. (A.13)

For improving the residual errors one step of Romberg extrapolation is used:4

I2(a,b) =
16I1(a,b)− I0(a,b)

15
. (A.14)

3 See [GG98], p. 3-5.
4 See [Ern02], p. 376.



APPENDIX A. MATHEMATICAL METHODS V

For a termination criterion one can choose:

Is =̂ Is+(I2(a,b)− I1(a,b)) (A.15)

where Is is a first (computational) guess (e.g. with Monte Carlo) for the value

of the integral[a,b] and=̂ denotes computational equivalence, i.e. with machine

precision. When dividing the integral iteratively into more and more parts the

sameIs is used even for all these subintervals as increasing the absolute accuracy

for partial integrals with less weight is unnecessary and inefficient.

For every interval[a,b] the integral is computed with 5 function calls in the first

step. With handing over the obtained results to the computation of the partial

integrals (f (a), f
(

a+m
2

)
and f (m) respectivef (m), f

(
m+b

2

)
and f (b)) only two

additional function calls per each partial integral have to be computed leading to

an efficient algorithm.

For well behaving and converging functions such as (6.8), (6.17), (6.18), (7.20),

and (7.21) the main problem of numerical integration, the correctness of the ob-

tained results, is usually not given.

A.3 Deriving a Closed-Form Solution to Riccati

Equations with Piece-Wise Constant Coeffi-

cients

Given the general problem where coefficients are constant

dA
dτ

= a0B, (A.16)

dB
dτ

= b2B2 +b1B+b0 (A.17)

with the initial conditions

A(0) = A0 and B(0) = B0
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one starts with solving forB as it is independent ofA. The equation5

b2Y
2 +b1Y +b0 = 0 (A.18)

has two solutions

Y± =
−b1±d

2b2
with d =

√
b2

1−4b0b2. (A.19)

ChoosingY+ we consider the difference betweenY+ andB

Y1 = B−Y+.

Obviously,Y1 satisfies

dY1

dτ
=

d(Y1 +Y+)
dτ

= b2(Y1 +Y+)2 +b1(Y1 +Y+)+b0

= b2Y
2
1 +

(A.19)︷ ︸︸ ︷
(2b2Y+ +b1)Y1

= b2Y
2
1 +dY1

with the initial condition

Y1(0) = B0−Y+.

This Bernoulli equation can be solved explicitly

Y1 =
d
b2

gedτ(
1−gedτ

) where g =
−b1 +d−2B0b2

−b1−d−2B0b2
(A.20)

5 See [WZ02], p. 29f.
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leading to the solution forB

B(τ) = Y+ +Y1

=
−b1 +d

2b2
+

d
b2

gedτ(
1−gedτ

)
= B0 +

(−b1 +d−2b2B0)
(
1−edτ)

2b2
(
1−gedτ

) (A.21)

and through integrating this result also to the solution of A

A(τ) = A0 +a0

∫ τ

0
B(s)ds

= A0 +a0B0τ+
a0(−b1 +d−2b2B0)

2b2

∫ τ

0

1−edτ

1−gedτ dτ

= A0 +a0B0τ+
a0(−b1 +d−2b2B0)

2b2

[
τ−
∫ τ

0

(1−g)edτ

1−gedτ dτ
]

= A0 +
a0(−b1 +d)τ

2b2
− a0(−b1 +d−2b2B0)

2b2d

∫ edτ

1

1−g
1−gu

du

= A0 +
a0(−b1 +d)τ

2b2
− a0(−b1 +d−2b2B0)

2b2d
g−1

g
ln

[
1−gedτ

1−g

]
= A0 +

a0

2b2

(
(−b1 +d)τ−2ln

[
1−gedτ

1−g

])
. (A.22)

A.4 Deriving the Partial Differential Equation for

Heston’s Stochastic Volatility Model

Similar to the Black-Scholes framework the partial differential equation in Hes-

ton’s stochastic volatility model can be derived by a replication strategy.6 The

price of the derivativeC is replicated by a portfolioX of the underlying stockA,

the money market account (with the risk-free interest rater) and another derivative

6 See [Wys00], p. 4f.
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W. The initial valueX0 of the portfolio evolves according to:

dX = adA+bdW+ r(X−aA−bW)dt (A.23)

with a is the number of stocks andb is the number of the derivativesW in the

portfolio.7 From the exact equality for all timest:

X(t) = C(A,V, t) (A.24)

follows the equality of the differentials:8

dA =
{

∂A
∂t

+κ(θ−V)
∂C
∂V

+µA
∂C
∂A

+
1
2

ε2V
∂2C
∂V2 +

1
2
VA2∂2C

∂A2 +ρεVA
∂2C

∂A∂V

}
︸ ︷︷ ︸

C̃

dt

+ε
√

V
∂C
∂V

dw+
√

VA
∂C
∂A

dz (A.25)

dX = aA(µ− r)dt +a
√

VAdz+ rXdt +bdW− rbWdt (A.26)

with

ρ = the correlation between the two Wiener processes dz and dw.

Since (A.25) is also valid for the second derivativeW, one can insert this in equa-

tion (A.26) and write:

ε
√

V
∂C
∂V

dw+
√

VA
∂C
∂A

dz+C̃dt = aA(µ− r)dt +a
√

VAdz+ rXdt

−rbWdt +bW̃dt +bε
√

V
∂W
∂V

dw+b
√

VA
∂W
∂A

dz. (A.27)

When setting the coefficients of the Wiener processes dz and dw equal on both

7 The parametersa andb are time-dependent as they are the weight factors of a self-financing
replication strategy but stay unchanged in the equation for the evolution of the portfolio. See
[KK99], p. 62f, 67f, 70f.

8 This can be derived with a two-dimensional version of Ito’s Lemma, see [FPS00], p. 44.
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sides of equation (A.27) one can write:

a
√

VA+b
√

VA
∂W
∂A

=
√

VA
∂C
∂A

,

bε
√

V
∂W
∂V

= ε
√

V
∂C
∂V

. (A.28)

This leads to:

b =
∂C
∂V
∂W
∂V

, (A.29)

a =
∂C
∂A

−
∂C
∂V
∂W
∂V

∂W
∂A

. (A.30)

From inserting (A.29) and (A.30) in (A.28) follows:

1
∂W
∂V

{
∂W
∂t

+κ(θ−V)
∂W
∂V

+ rA
∂W
∂A

+
1
2

ε2V
∂2W
∂V2

+
1
2
VA2∂2W

∂A2 +ρεVA
∂2W
∂V∂A

− rW

}

=
1
∂C
∂V

{
∂W
∂t

+κ(θ−V)
∂C
∂V

+ rA
∂C
∂A

+
1
2

ε2V
∂2C
∂V2

+
1
2
VA2∂2C

∂A2 +ρεVA
∂2C

∂V∂A
− rC

}
(A.31)

Since the left side of this equation only depends uponW, the right side only upon

C and the derivativeW can be chosen to be an arbitrary derivative with the same

underlying stock, both sides of the equation must be equal to a functionλ(A,V, t),
the so-called market price of risk/volatility. This function is chosen to be time-

constant and independent of the actual stock price level and assumed to be propor-

tional to the variance level:9

λ(A,V, t) = λV. (A.32)

9 For stock price options the market price of risk is always positive.
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Equations (A.31) and (A.32) lead to the following partial differential equation for

Heston’s model:

1
2
VA2∂2C

∂A2 +ρεVA
∂2C

∂A∂V
+

1
2

ε2V
∂2C
∂V2 + rA

∂C
∂A

+ [κ(θ−V)−λV]
∂C
∂V

− rC +
∂C
∂t

= 0. (A.33)

This partial differential equations can then be used to evolve an exact solution

via Fourier transformation.10 Similar equations lead to the exact caplet pricing

formulæ in Chapter6.

A.5 Drawing the Random Jump Size for Glasser-

man, Merener (2001)

To determine the random jump size in this model one has to produce a table with

the cumulated distribution function (CDF), drawing an equally distributed random

number and looking up the jump size in the table.

The density is given by:

f (y) =
f1(y)+y f1(y)

2+m1
(A.34)

with

f1(y) ∼ LN(a1,s
2
1),

m1 = ea1+s2
1/2−1.

Then the density off1(y):

f1(y) =
1√

2πs1y
e−

1
2(ln[y]−a1)2/s2

1 (A.35)

10 See [Hes93], p. 330f.
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leads to:

f (y) =
1+y

2+m1
f1(y) =

1+y

(2+m1)
√

2πs1y
e−

1
2(ln[y]−a1)2/s2

1. (A.36)

The CDF can then be computed via:

F(y) =
1

(2+m1)
√

2πs1

∫ y

0

1+v
v

e−
1
2(ln[v]−a1)2/s2

1dv︸ ︷︷ ︸
substitutingx = ln[v]

=
1

(2+m1)
√

2πs1

∫ ln[y]

−∞
(1+ex)e−

1
2(x−a1)2/s2

1dx

=
1

2+m1

[∫ ln[y]

−∞

1√
2πs1

e−
1
2(x−a1)2/s2

1dx+
∫ ln[y]

−∞

ex
√

2πs1
e−

1
2(x−a1)2/s2

1dx

]

=
11 1

2+m1

[
Φ
(

ln[y]−a1

s1

)
+ea1+s2

1/2Φ
(

ln[y]−a1−s2
1

s1

)]
=

1
2+m1

[
Φ
(

ln[y]−a1

s1

)
+(1+m1)Φ

(
ln[y]−a1−s2

1

s1

)]
. (A.37)

A.6 Parameters for Jarrow, Li, Zhao (2002)

The additional parametersβ0,β1 andβ2 in the model of Jarrow, Li and Zhao intro-

duced in Section9.1are given as follows:12

β0 = −
l2,3

(Ti)3

(
Ω31−Ω2

21−
1
4

Ω2(Ω20+Ω2
10

)
+
(

Ω21−
1
4

Ω2Ω10

)2
)

+
1
2

l21,2

(Ti)4

[
Ω41−3Ω31Ω21+2Ω3

21−
1
4

Ω2Ω30−
3
4

Ω2Ω10Ω20

+3

(
Ω21−

1
4

Ω2Ω10

)(
Ω31−Ω2

21−
1
4

Ω2(Ω20+Ω2
10

))]
(A.38)

11 See [Fri04], p. 152.
12 See [ABR01], p. 32.
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and

β1 = Ω−2

{
−

l2,3

(Ti)3

(
Ω20−3Ω2

10+2Ω10

(
Ω21−

1
4
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β2 = Ω−4

(
−

l2,3

(Ti)3Ω2
10+

3
2

l21,2

(Ti)4Ω10
(
Ω20−3Ω2

10

))
(A.40)

where13

Ω = Ω
(

0,L( j)
i ,c

)
, (A.41)

l2,3 = −1
2
V(0)

∫ Ti

0
eκup(u)

∫ Ti

u
e−κvp2(v)dvdu. (A.42)

Due to the nested nature of the triple integrall2,3 (p(t) is an integral itself) it can

be numerically integrated in a single loop.

13 See [ABR01], p. 12f.
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Additional Figures

All figures given in this appendix are for US-$ caplets and swaptions.

To Section 3.2 Sample Data
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Figure B.1: Caplet volatility smiles for different expiries.
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Figure B.2: Swaption volatility smiles for 1 year expiry and different tenors.

To Section 4.1 Displaced Diffusion
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Figure B.3: The fit across moneynesses to the market implied caplet volatil-
ities with the displaced diffusion model for different expiries.α1 = 3300%,
α2 = 7700%, α5 = 41.2%andα20 = 21.1%.
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To Section 4.2 Constant Elasticity of Variance
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Figure B.4: The fit across moneynesses to the market implied caplet volatilities
with the constant elasticity of variance model for different expiries.γ1 = 0.004,
γ2 = 0.008, γ5 = 0.07andγ20 = 0.18.

To Section 4.5 Mixture of Lognormals
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Figure B.5: The fit across moneynesses to the market implied caplet volatilities
with the mixture of lognormals model for different expiries.θ1 = 55%, θ2 = 48%,
θ5 = 56%andθ20 = 74%.
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Figure B.6: The fit across moneynesses to the market implied caplet volatilities
with the extended mixture of lognormals model for different expiries.β1 = 0%,
σ̃1,1 = 19%, σ̃1,2 = 72%, β2 = 0%, σ̃2,1 = 11%, σ̃2,2 = 58%, β5 = 14%, σ̃5,1 =
11%, σ̃5,2 = 33%, β20 = 0.2%, σ̃20,1 = 8%andσ̃20,2 = 17%.

To Section 6.2 Andersen, Andreasen (2002)
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Figure B.7: The fit across moneynesses to the market implied caplet volatili-
ties with Andersen/Andreasen’s stochastic volatility model for different expiries.
σ1,2 = 49%, σ2,3 = 38%, σ5,6 = 25%, σ20,21 = 14%, κ = 12%andε = 91%.
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To Section 6.4 Wu, Zhang (2002)
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Figure B.8: The fit across moneynesses to the market implied caplet volatilities
with Wu/Zhang’s stochastic volatility model with correlation for different expiries.
σ1 = 66%, ρ1,V = −65%, σ2 = 62%, ρ2,V = −73%, σ3 = 53%, ρ3,V = −65%,
σ4 = 43%, ρ4,V =−55%, κ = 4%andε = 221%.

To Section 7.3 Glasserman, Kou (1999)
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Figure B.9: The fit across moneynesses to the market implied caplet volatilities
with Glasserman/Kou’s jump model for different expiries.σ1 = 34%, λ1 = 11%,
s1 = 357%, m1 =−99.99%, σ2 = 23%, λ2 = 8%, s2 = 546%, m2 =−97%, σ5 =
17%, λ5 = 2%, s5 = 254%, m5 =−89%, σ20 = 10%, λ20 = 1%, s20 = 151%and
m20 =−92%.
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To Section 7.4 Kou (1999)
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Figure B.10: The fit across moneynesses to the market implied caplet volatilities
with Kou’s jump model for different expiries.σ1 = 34%, λ1 = 11%, η1 = 500%,
ξ1 = −15, σ2 = 23%, λ2 = 8%, η2 = 500%, ξ2 = −18.6, σ5 = 17%, λ5 = 2%,
η5 = 254%, ξ5 =−5.4, σ20 = 10%, λ20 = 1%, η20 = 151%andξ20 =−3.7.

To Section 9.2 Stochastic Volatility with DD
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Figure B.11: The fit across moneynesses to the market implied caplet volatilities
with the stochastic volatility and displaced diffusion model for different expiries.
σ1,2 = 53%, β1,2 = 3%, σ2,3 = 42%, β2,3 = 3%, σ5,6 = 26%, β5,6 = 10%, σ20,21 =
14%, β20,21 = 20%, ε = 200%andκ = 35%.
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Figure B.12: The fit across moneynesses to the market implied swaption volatil-
ities with the stochastic volatility and displaced diffusion model for expiry in
one year and different tenors.σ1,2 = 53%, β1,2 = 3%, σ1,3 = 47%, β1,3 = 3%,
σ1,6 = 33%, β1,6 = 2%, σ1,21 = 21%, β1,21 = 15%, ε = 200%andκ = 35%.



Appendix C

Calibration Tables for SV and DD

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 31,7% 28,6% 25,6% 23,4% 21,8% 20,9% 20,0% 19,3% 18,7% 18,0%
2y 27,8% 24,4% 22,5% 20,9% 19,4% 18,7% 17,9% 17,4% 16,8% -    
3y 24,7% 22,4% 20,6% 19,1% 17,8% 17,3% 16,7% 16,2% -    -    
4y 22,4% 20,6% 18,9% 17,7% 16,7% 16,2% 15,7% -    -    -    
5y 20,2% 18,9% 17,4% 16,4% 15,7% 15,3% -    -    -    -    
6y 18,7% 17,8% 16,5% 15,8% 15,2% -    -    -    -    -    
7y 17,2% 16,5% 15,6% 15,1% -    -    -    -    -    -    
8y 16,6% 15,9% 15,1% -    -    -    -    -    -    -    
9y 15,9% 15,3% -    -    -    -    -    -    -    -    

10y 15,2% -    -    -    -    -    -    -    -    -    

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 34,7% 20,7% 6,2% 6,2% 3,7% 4,0% 6,8% 6,8% 7,0% 7,1%
2y 25,6% 10,5% 5,5% 5,8% 2,8% 5,6% 3,0% 3,2% 3,4% -    
3y 28,1% 11,4% 6,6% 2,9% 2,7% 2,8% 2,9% 2,9% -    -    
4y 25,2% 17,0% 8,7% 3,2% 3,1% 2,9% 2,7% -    -    -    
5y 27,5% 14,1% 12,6% 2,7% 2,9% 2,7% -    -    -    -    
6y 18,0% 12,7% 5,3% 3,1% 3,0% -    -    -    -    -    
7y 5,3% 3,4% 3,0% 3,3% -    -    -    -    -    -    
8y 3,4% 3,3% 3,1% -    -    -    -    -    -    -    
9y 3,2% 3,1% -    -    -    -    -    -    -    -    

10y 3,0% -    -    -    -    -    -    -    -    -    

Ex
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s (

T r
)

Ex
pi

rie
s (

T r
)

Tenors (Ts-Tr)

Tenors (Ts-Tr)

βr,s

σr,s

Table C.1: Calibrated parametersσr,s andβr,s after step 1.
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1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
0y 31,7% 26,5% 22,1% 19,9% 19,3% 21,0% 19,2% 20,5% 19,3% 17,4%
1y 29,0% 21,6% 21,2% 17,4% 11,3% 19,9% 11,8% 18,5% 17,8% -    
2y 29,5% 21,3% 17,7% 18,2% 5,4% 22,3% 13,8% 17,6% -    -    
3y 26,6% 22,1% 15,5% 18,4% 5,0% 17,7% 13,4% -    -    -    
4y 23,6% 23,2% 13,0% 15,0% 7,7% 17,8% -    -    -    -    
5y 20,2% 26,0% 14,6% 14,1% 6,1% -    -    -    -    -    
6y 9,6% 28,5% 11,2% 15,8% -    -    -    -    -    -    
7y 3,0% 29,5% 7,0% -    -    -    -    -    -    -    
8y 3,0% 26,4% -    -    -    -    -    -    -    -    
9y 3,0% -    -    -    -    -    -    -    -    -    

Ti
m

e 
t

Forward rate resetting in (Ti-t)σi(t)

Table C.2: Bootstrapped parametersσi(t) after step 2, substep 1.

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
0y 31,2% 26,9% 22,9% 20,7% 19,0% 18,1% 17,6% 17,2% 16,5% 15,6%
1y 27,6% 23,9% 20,6% 18,1% 16,5% 15,7% 15,4% 15,3% 15,3% -    
2y 25,6% 22,5% 19,1% 16,7% 15,1% 14,4% 14,0% 14,1% -    -    
3y 23,8% 21,0% 18,2% 15,9% 14,6% 13,9% 13,2% -    -    -    
4y 22,8% 20,6% 18,0% 16,1% 14,9% 14,1% -    -    -    -    
5y 21,7% 19,7% 17,5% 15,8% 14,6% -    -    -    -    -    
6y 20,6% 19,0% 17,1% 15,5% -    -    -    -    -    -    
7y 20,0% 18,6% 16,8% -    -    -    -    -    -    -    
8y 19,4% 18,3% -    -    -    -    -    -    -    -    
9y 18,9% -    -    -    -    -    -    -    -    -    

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 31,2% 28,6% 25,9% 23,8% 22,1% 20,8% 19,7% 18,8% 18,0% 17,3%
2y 27,2% 24,9% 22,9% 21,2% 19,9% 18,8% 17,9% 17,2% 16,5% -    
3y 24,1% 22,4% 20,8% 19,3% 18,2% 17,3% 16,5% 15,9% -    -    
4y 21,9% 20,4% 19,0% 17,8% 16,9% 16,1% 15,5% -    -    -    
5y 20,1% 18,9% 17,7% 16,8% 16,0% 15,3% -    -    -    -    
6y 18,7% 17,7% 16,8% 16,0% 15,3% -    -    -    -    -    
7y 17,6% 16,8% 16,0% 15,3% -    -    -    -    -    -    
8y 16,9% 16,2% 15,5% -    -    -    -    -    -    -    
9y 16,3% 15,7% -    -    -    -    -    -    -    -    

10y 15,7% -    -    -    -    -    -    -    -    -    

Ex
pi

rie
s (

T r
)
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m
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t

Tenors (Ts-Tr)

Forward rate resetting in (Ti-t)

σ*r,s

σi(t)

Table C.3: Optimized parametersσi(t) and the resultingσ∗r,s after step 2, sub-
step 2.
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1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
0y 34,7% 4,5% -30,8% 10,9% -24,2% 24,1% 28,5% 19,7% -3,5% 8,9%
1y 51,1% 22,1% -25,0% 34,6% -40,6% 2,4% -50% 22,2% -7,2% -    
2y 100% 20,4% -26,0% -39,2% -50% 15,7% 25,5% 19,0% -    -    
3y 100% 100% 32,1% -50% -50% -50% -50% -    -    -    
4y 100% 100% 100% -50% -50% 37,1% -    -    -    -    
5y 100% 100% 100% 100% 100% -    -    -    -    -    
6y 100% -50% -50% -50% -    -    -    -    -    -    
7y -23,5% 7,5% 23,6% -    -    -    -    -    -    -    
8y 7,8% 2,6% -    -    -    -    -    -    -    -    
9y 0,9% -    -    -    -    -    -    -    -    -    

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 34,7% 20,8% 6,4% 6,7% 1,9% 4,2% 6,6% 7,8% 7,1% 7,2%
2y 25,4% 11,3% 6,0% 4,2% 2,9% 4,6% 3,5% 3,7% 3,6% -    
3y 26,1% 14,8% 7,4% 2,9% 2,5% 1,9% 2,6% 2,9% -    -    
4y 21,1% 17,3% 10,6% 6,9% 4,3% 3,7% 3,1% -    -    -    
5y 22,4% 16,1% 12,6% 6,9% 4,9% 4,2% -    -    -    -    
6y 13,1% 12,3% 5,5% 3,3% 2,6% -    -    -    -    -    
7y 4,8% 1,1% 1,5% 2,5% -    -    -    -    -    -    
8y 3,4% 3,3% 3,1% -    -    -    -    -    -    -    
9y 3,2% 3,1% -    -    -    -    -    -    -    -    

10y 3,0% -    -    -    -    -    -    -    -    -    

Ex
pi

rie
s (

T r
)

Ti
m

e 
t

Tenors (Ts-Tr)

Forward rate resetting in (Ti-t)

β*
r,s

βi(t)

Table C.4: Optimized parametersβi(t) and the resultingβ∗r,s after step 2, sub-
step 3.
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1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 0,5% 0,0% -0,3% -0,4% -0,3% 0,1% 0,3% 0,5% 0,7% 0,7%
2y 0,5% -0,5% -0,4% -0,3% -0,4% -0,1% 0,0% 0,2% 0,3% -    
3y 0,5% 0,0% -0,2% -0,2% -0,4% 0,0% 0,1% 0,3% -    -    
4y 0,4% 0,2% -0,1% -0,2% -0,2% 0,1% 0,2% -    -    -    
5y 0,1% 0,1% -0,3% -0,4% -0,3% 0,0% -    -    -    -    
6y -0,1% 0,1% -0,3% -0,2% -0,1% -    -    -    -    -    
7y -0,4% -0,4% -0,5% -0,3% -    -    -    -    -    -    
8y -0,3% -0,3% -0,4% -    -    -    -    -    -    -    
9y -0,4% -0,3% -    -    -    -    -    -    -    -    

10y -0,6% -    -    -    -    -    -    -    -    -    

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 0,0% -0,1% -0,2% -0,5% 1,8% -0,2% 0,2% -0,9% -0,1% -0,1%
2y 0,2% -0,8% -0,5% 1,6% -0,1% 1,0% -0,5% -0,6% -0,3% -    
3y 2,0% -3,4% -0,8% 0,0% 0,2% 0,9% 0,3% 0,1% -    -    
4y 4,1% -0,3% -1,9% -3,7% -1,2% -0,8% -0,4% -    -    -    
5y 5,1% -2,0% 0,0% -4,3% -2,0% -1,5% -    -    -    -    
6y 4,9% 0,3% -0,2% -0,2% 0,4% -    -    -    -    -    
7y 0,5% 2,4% 1,5% 0,8% -    -    -    -    -    -    
8y 0,0% 0,0% 0,0% -    -    -    -    -    -    -    
9y 0,0% 0,0% -    -    -    -    -    -    -    -    

10y 0,0% -    -    -    -    -    -    -    -    -    

Ex
pi

rie
s (

T r
)

Ex
pi

rie
s (

T r
)
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Tenors (Ts-Tr)

βr,s - β
*
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*
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Table C.5: The differences between the parameters obtained in step 1 (σr,s and
βr,s) and the parameters determined by the forward rate parameters obtained in
step 2.
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